Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 13 - MCQExams.com

For the function, f(x)=(x1x)2, the first derivative with respect to x is 
  • 2(x1x3)
  • 2(x1x)
  • 2(x+1x2)
  • 2(x1x2)
limθπ/21sinθ(π/2θ)cosθ is equal to
  • 1
  • 1
  • 1/2
  • 1/2
If x + y = sin (x + y) then dydx =
  • 12
  • 0
  • -1
  • 13
limn1n2[sin3π4n+2sin32π4n+3sin33π4n+....+nsin3nπ4n]=
  • 29π2(5215π)
  • 29π2(52+15π)
  • 29π(5217π)
  • 29π2(52+17π)
limx0 1cos(1cos4x)x4 is equal to : 
  • 4
  • 16
  • 32
  • None of these
limx0((1+x)1xe)1sinx is equal to 
  • e
  • e
  • 1e
  • 1/e
limx0(25)x2(15)x+9xcos6xcos2x is equal to :
  • log(53)
  • 14log15
  • 116(53)2
  • log(35)
Arrange the following limits in the ascending order :
(1)  limx(1+x2+x)x+2

(2)  limx0(1+2x)3/x

(3)  limθ0sinθ2θ

(4)  limx0loge(1+x)x
  • 1,2,3,4
  • 1,3,4,2
  • 1,4,3,2
  • 3,4,1,2
If z = z(x) and (2cosx)dzdx+(sinx)z=sinx, z(0) = 3, then z(π2) equals :
  • 1
  • 32
  • 52
  • 12
limx0xtan2x2tan2x(1cos2x) equals:
  • 14
  • 1
  • 12
  • 12
If limx0x(1+acosx)bsinxx3=1, then
  • a=52
  • b=52
  • a+b=4
  • a+b=4
limnΣnr=1πnsin(πrn) is equal to
  • 1
  • 2
  • 3
  • 4
Evaluate : limx0(exn(3x1)(3x1)xsinxexnx) is equal to 
  • 1en3
  • e n 3
  • 3
  • 13
The value of limx0|x|sinx equals 
  • 0
  • 1
  • 1
  • does not exist
If limx0(sinnx)[(an)nxtanx]x2=0, then the value of a
  • 1n
  • n1n
  • n+1n
  • None of these
limx0(cosα)x(sinα)xcos2α(x4),α(0,π2) is equal to
  • cos4α.log(cosα)sin4α.log(sinα)
  • sin4α.log(cosα)cos4α.log(sinα)
  • sin4α.log(cosα)+cos4α.log(sinα)
  • None of the above
Ltx0tanxxx2tanx equals:
  • 1
  • 1/2
  • 1/3
  • None of these
evaluatelimx0xx0cost2dtx36x
  • 3
  • 1
  • 0
  • 1
limxπ/2(secx+tanx) is equal to 
  • 1
  • 1
  • 12
  • 0
The value f limxπ/41sin2xπ4x=
  • 14
  • 14
  • 12
  • None of these
limx(x+12x+1)x2 equals?
  • 0
  • e
  • 1
limxπ/2(cosecx1cot2x)=
  • 0
  • 12
  • 12
  • 1
If limx0aexbcosx12cxxcosx=2 then the value of a+b+c is-
  • 4
  • 4
  • 2
  • 2
limx2360+x24sin(x2) equals 
  • 14
  • 0
  • 112
  • Does not exist
limxπ2tan2x(2sin2x+3sinx+4sin2x+6sinx+2) is equal to
  • 34
  • 16
  • 112
  • 512
limx01cosxxlog(1+x)=
  • 1
  • 0
  • 1
  • 12
The value of π/20ln|tanx+cotx|dx is equal to?
  • πln2
  • πln2
  • π2ln2
  • π2ln2
limx0(cosx+asinbx)1x is equal to 
  • ea
  • eab
  • eb
  • ea/b
The values of limn4n5+23n2+15n4+22n3+1 is?
  • 1
  • 0
  • 1
Let f be a differentiable function such that f(x)=734f(x)x,(x>0) and f(1)4.
Then limx0+xf(1x):
  • Exists and equals 4
  • Does not exist
  • Exist and equals
  • Exists and equals 47
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers