Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 13 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 13
For the function,
f
(
x
)
=
(
x
−
1
x
)
2
, the first derivative with respect to x is
Report Question
0%
2
(
x
−
1
x
3
)
0%
2
(
x
−
1
x
)
0%
2
(
x
+
1
x
2
)
0%
2
(
x
−
1
x
2
)
lim
θ
→
π
/
2
1
−
sin
θ
(
π
/
2
−
θ
)
cos
θ
is equal to
Report Question
0%
1
0%
−
1
0%
1
/
2
0%
−
1
/
2
If x + y = sin (x + y) then
d
y
d
x
=
Report Question
0%
1
2
0%
0
0%
-1
0%
1
3
lim
n
→
∞
1
n
2
[
sin
3
π
4
n
+
2
sin
3
2
π
4
n
+
3
sin
3
3
π
4
n
+
.
.
.
.
+
n
sin
3
n
π
4
n
]
=
Report Question
0%
√
2
9
π
2
(
52
−
15
π
)
0%
√
2
9
π
2
(
52
+
15
π
)
0%
√
2
9
π
(
52
−
17
π
)
0%
√
2
9
π
2
(
52
+
17
π
)
lim
−
x
→
0
1
−
c
o
s
(
1
−
c
o
s
4
x
)
x
4
is equal to :
Report Question
0%
4
0%
16
0%
32
0%
None of these
l
i
m
x
→
0
(
(
1
+
x
)
1
x
e
)
1
s
i
n
x
is equal to
Report Question
0%
√
e
0%
e
0%
1
√
e
0%
1/e
l
i
m
x
→
0
(
25
)
x
−
2
(
15
)
x
+
9
x
c
o
s
6
x
−
c
o
s
2
x
is equal to :
Report Question
0%
l
o
g
(
5
3
)
0%
1
4
l
o
g
15
0%
−
1
16
(
5
3
)
2
0%
l
o
g
(
3
5
)
Arrange the following limits in the ascending
order :
(1)
lim
x
→
∞
(
1
+
x
2
+
x
)
x
+
2
(2)
lim
x
→
0
(
1
+
2
x
)
3
/
x
(3)
lim
θ
→
0
sin
θ
2
θ
(4)
lim
x
→
0
log
e
(
1
+
x
)
x
Report Question
0%
1
,
2
,
3
,
4
0%
1
,
3
,
4
,
2
0%
1
,
4
,
3
,
2
0%
3
,
4
,
1
,
2
Explanation
(i)
l
i
m
x
→
∞
(
1
+
x
2
+
x
)
x
+
2
=
(
1
x
+
1
2
x
+
1
)
x
+
2
=
l
i
m
x
→
∞
e
l
n
(
1
+
x
2
+
x
)
2
+
x
=
e
l
t
x
→
∞
(
2
+
x
)
l
n
(
1
+
x
2
+
x
)
=
e
l
t
x
→
∞
l
n
(
1
+
x
)
−
l
n
(
2
+
x
)
(
1
/
2
+
x
)
=
e
l
t
x
→
∞
1
1
+
x
−
1
2
+
x
−
1
(
2
+
x
)
2
=
e
l
t
x
→
∞
(
2
+
x
)
2
[
(
2
+
x
)
−
(
1
+
x
)
]
(
2
+
x
)
−
(
1
+
x
)
(
2
+
x
)
(
1
+
x
)
=
e
l
t
x
→
∞
(
2
+
x
)
1
+
x
=
e
1
(ii)
l
i
m
x
→
0
(
1
+
2
x
)
3
/
x
=
e
l
t
x
→
0
(
2
x
)
3
/
x
=
e
6
(iii)
l
t
θ
→
0
sin
θ
2
θ
=
l
t
θ
→
0
cos
θ
2
=
1
2
(iv)
l
t
x
→
0
l
o
g
e
(
1
+
x
)
x
.
l
t
x
→
0
1
1
+
x
=
1
∴
3
<
4
<
1
<
2
.
If z = z(x) and
(
2
c
o
s
x
)
d
z
d
x
+
(
s
i
n
x
)
z
=
s
i
n
x
, z(0) = 3, then
z
(
π
2
)
equals :
Report Question
0%
1
0%
3
2
0%
5
2
0%
1
2
l
i
m
x
→
0
x
tan
2
x
−
2
tan
2
x
(
1
−
c
o
s
2
x
)
equals:
Report Question
0%
1
4
0%
1
0%
1
2
0%
−
1
2
If
lim
x
→
0
x
(
1
+
a
cos
x
)
−
b
sin
x
x
3
=
1
,
then
Report Question
0%
a
=
5
2
0%
b
=
−
5
2
0%
a
+
b
=
4
0%
a
+
b
=
−
4
l
i
m
n
→
∞
Σ
n
r
=
1
π
n
s
i
n
(
π
r
n
)
is equal to
Report Question
0%
1
0%
2
0%
3
0%
4
Evaluate :
lim
x
→
0
(
e
x
ℓ
n
(
3
x
−
1
)
−
(
3
x
−
1
)
x
sin
x
e
x
ℓ
n
x
)
is equal to
Report Question
0%
1
e
ℓ
n
3
0%
e
ℓ
n
3
0%
3
0%
1
3
The value of
lim
x
→
0
|
x
|
s
i
n
x
equals
Report Question
0%
0
0%
−
1
0%
1
0%
does not exist
If
lim
x
→
0
(
sin
n
x
)
[
(
a
−
n
)
n
x
−
t
a
n
x
]
x
2
=
0
, then the value of
a
Report Question
0%
1
n
0%
n
−
1
n
0%
n
+
1
n
0%
N
o
n
e
o
f
t
h
e
s
e
lim
x
→
0
(
cos
α
)
x
−
(
sin
α
)
x
−
cos
2
α
(
x
−
4
)
,
α
∈
(
0
,
π
2
)
is equal to
Report Question
0%
cos
4
α
.
log
(
cos
α
)
−
sin
4
α
.
log
(
sin
α
)
0%
sin
4
α
.
log
(
cos
α
)
−
cos
4
α
.
log
(
sin
α
)
0%
sin
4
α
.
log
(
cos
α
)
+
cos
4
α
.
log
(
sin
α
)
0%
N
o
n
e
o
f
t
h
e
a
b
o
v
e
L
t
x
→
0
t
a
n
x
−
x
x
2
t
a
n
x
equals:
Report Question
0%
1
0%
1/2
0%
1/3
0%
None of these
evaluate
l
i
m
x
→
0
x
−
∫
x
0
c
o
s
t
2
d
t
x
3
−
6
x
Report Question
0%
3
0%
−
1
0%
0
0%
1
lim
x
→
π
/
2
(
s
e
c
x
+
t
a
n
x
)
is equal to
Report Question
0%
1
0%
−
1
0%
1
2
0%
0
The value f
lim
x
→
π
/
4
√
1
−
√
sin
2
x
π
−
4
x
=
Report Question
0%
−
1
4
0%
1
4
0%
1
2
0%
N
o
n
e
o
f
t
h
e
s
e
lim
x
→
∞
(
x
+
1
2
x
+
1
)
x
2
equals?
Report Question
0%
0
0%
e
0%
1
0%
∞
l
i
m
x
→
π
/
2
(
c
o
s
e
c
x
−
1
c
o
t
2
x
)
=
Report Question
0%
0
0%
−
1
2
0%
1
2
0%
1
If
lim
x
→
0
a
e
−
x
−
b
cos
x
−
1
2
c
x
x
cos
x
=
2
then the value of
a
+
b
+
c
is-
Report Question
0%
4
0%
−
4
0%
2
0%
−
2
l
i
m
x
→
2
3
√
60
+
x
2
−
4
sin
(
x
−
2
)
equals
Report Question
0%
1
4
0%
0
0%
1
12
0%
Does not exist
l
i
m
x
→
π
2
t
a
n
2
x
(
√
2
s
i
n
2
x
+
3
s
i
n
x
+
4
−
√
s
i
n
2
x
+
6
s
i
n
x
+
2
)
is equal to
Report Question
0%
3
4
0%
1
6
0%
1
12
0%
5
12
lim
x
→
0
1
−
cos
x
x
log
(
1
+
x
)
=
Report Question
0%
1
0%
0
0%
−
1
0%
1
2
The value of
∫
π
/
2
0
l
n
|
tan
x
+
cot
x
|
d
x
is equal to?
Report Question
0%
π
l
n
2
0%
−
π
l
n
2
0%
π
2
l
n
2
0%
−
π
2
l
n
2
l
i
m
x
→
0
(
cos
x
+
a
sin
b
x
)
1
x
is equal to
Report Question
0%
e
a
0%
e
a
b
0%
e
b
0%
e
a
/
b
The values of
lim
n
→
∞
4
√
n
5
+
2
−
3
√
n
2
+
1
5
√
n
4
+
2
−
2
√
n
3
+
1
is?
Report Question
0%
1
0%
0
0%
−
1
0%
∞
Let
f
be a differentiable function such that
f
′
(
x
)
=
7
−
3
4
f
(
x
)
x
,
(
x
>
0
)
and
f
(
1
)
≠
4
.
Then
lim
x
→
0
+
x
f
(
1
x
)
:
Report Question
0%
Exists and equals 4
0%
Does not exist
0%
Exist and equals
0%
Exists and equals
4
7
Explanation
f
′
(
x
)
=
7
−
3
4
f
(
x
)
x
(
x
>
0
)
Given
f
(
1
)
≠
4
lim
x
→
0
+
x
f
(
1
x
)
=
?
d
y
d
x
+
3
4
y
x
=
7
(This is LDE)
IF
=
e
∫
3
4
x
d
x
=
e
3
4
l
n
|
x
|
=
x
3
4
y
.
x
3
4
=
∫
7.
x
3
4
d
x
y
.
x
3
4
=
7.
x
7
4
7
4
+
C
f
(
x
)
=
4
x
+
C
.
x
−
3
4
f
(
1
x
)
=
4
x
+
C
.
x
3
4
lim
x
→
0
+
x
f
(
1
x
)
=
lim
x
→
0
+
(
4
+
C
.
x
7
4
)
=
4
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page