Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 5 - MCQExams.com

limxπ2(1tanx2)(1sinx)(1+tanx2)(π2x)3 is

  • 0
  • 132
  • 18
If P(x) is a polynomial such that P(x2+1)={P(x2)}2+1 and P(0)=0 then P(0) is equal to
  • 1
  • 0
  • 1
  • none of these
Let f(x)={sinx,xnπ2,x=nπ, where nϵZ and
g(x)={x2+1,x23,x=2.
Then limx0g(f(x)) is
  • 0
  • 1
  • 3
  • none of these
ddx(loge(1+x1x)1/412tan1x.)
  • x21x4.
  • x31x4.
  • x41x4.
  • x21x4.
Differentiate tanxn+tannxtan1a+xn1axn.
  • (sec2xn).nxn1+ntann1x.sec2x[1(1x2n)]nxn1
  • (sec2xn).nxn1+ntann1x.sec2x[1(1+x2n)]nxn
  • (sec2xn).nxn1+ntannx.sec2x[1(1+x2n)]nxn1
  • (sec2xn).nxn1+ntann1x.sec2x[1(1+x2n)]nxn1
ddx(tan1sinx+cosxcosxsinx)
  • 1
  • 2
  • 1
  • 2
ddxtan1(acosxbsinxbcosx+asinx)
  • 1
  • 2
  • 1
  • 2
Differentiate the following: cot11+sinx+1sinx(1+sinx)(1sinx)
  • 12.
  • 12.
  • 14.
  • 14.
ddxtan1(cosx1+sinx)
  • 12
  • 14
  • 18
  • 12
Let f(x) be defined by f(x)={sin2xif 0<xπ6ax+bif π6<x1. The values of a and b such that f and f are continuous, are
  • a=1,b=12+π6
  • a=12,b=12
  • a=1,b=32π6
  • None of these
A polynomial f(x) leaves remainder 15 when divided by (x3) and (2x+1) when divided by (x1)2. When f is divided by (x3)(x1)2, the remainder is
  • 2x2+2x+3
  • 2x22x3
  • 2x22x+3
  • none of these
If f(x) is a polynomial of degree n(>2) and f(x)=f(kx),( where k is a fixed real number), then degree of f(x) is
  • n
  • n1
  • n2
  • None of these
If 2f(sinx)+f(cosx)=x, then ddxf(x) is
  • sinx+cosx
  • 2
  • 11x2
  • none of these
If for all x,y the function f is defined by f(x)+f(y)+f(x).f(y)=1 and f(x)>0, then
  • f(x) does not exist
  • f(x)=0 for all x
  • f(0)<f(1)
  • None of these
If the functions f(x)=sin(x+a) and g(x)=bsinx+ccosx satisfy f(0)=g(0) and f(0)=g(0) then
  • b=π2
  • b=cosa
  • c=sina
  • c=cosa
If f(x)=g(x) and g(x)=f(x) and f(2)=4=f(2) then f2(16)+g2(16) is
  • 16
  • 32
  • 64
  • None of these
Let f(x)=x1+x+2410x1;1<x<26 be a real valued function. Then f(x) for 1<x<26 is
  • 0
  • 1x1
  • 2x15
  • none of these
If y=sec1(x+1x1)+sin1(x1x+1) then dydx is equal to
  • 0
  • x+1
  • 1
  • 1
A curve passing through the point (1,1) is such that the intercept made by a tangent to it on x-axis is three times the x co-ordinate of the point of tangency, then the equation of the curve is:
  • y=1x2
  • y=x
  • y=1x
  • none
If limx0(f(x)g(x)) exists for any functions f and g then
  • limxaf(x) and limxag(x) exist
  • limxaf(x) exist but limxag(x) may not exist
  • limxaf(x) may not exist but limxag(x) exist
  • limxaf(x) and limxag(x) may not exist
If for a non-zero x, the function f(x) satisfies the equation af(x)+bf(1x)=1x5(ab) then f(x) is equal to
  • 1b2a2(ax2+b)
  • 1a2b2(ax2+b)
  • 1a2b2(ax2b)
  • none of these
If Sn denotes the sum of n terms of g.p. whose common ratio is r, then (r1)dSndr is equal to
  • (n1)Sn+nSn1
  • (n1)SnnSn1
  • (n1)Sn
  • None of these
Let y=x+x+x+...... then dydx
  • 12y1
  • xx2y
  • 11+4x
  • y2x+y
limx01cos3x+sin3x+n(1+x3)+n(1+cosx)x21+2cos2x+tan4x+sin3x is equal to -
  • 34
  • ln2
  • ln24
  • 3/2

f(x)=g(x) and g(x)=f(x) for all real x and f(5)=2=f(5) then f2(10)+g2(10) is -

  • 2
  • 4
  • 8
  • None of these
ddx(tan1(xx1+x3/2)) equals (for x0)
  • 12x(1+x)11+x2
  • 12x(1+x)+11+x2
  • 11+x11+x2
  • None of these
Evaluate limn[n!nn]1/n.
  • 1e
  • 1t
  • 1n
  • none of above
ddx(tan1(ax1+ax)) equals if ax > -1
  • a1+x2
  • 11+x2
  • a1+x2
  • 11+x2
If f(x)=|cosxsinx| then f(π4) is equal to-
  • 2
  • 2
  • 0
  • Does not exist
If y=secx0 then dydx=
  • secxtanx
  • secx0tanx0
  • π180secx0tanx0
  • 180πsecx0tanx0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers