Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 6 - MCQExams.com

If y=11+xβα+xγα+11+xαβ+xγβ+11+xαγ+xβγ
then dydx is equal to-
  • 0
  • 1
  • (a+β+γ)Xα+β+γ1
  • None of these
If y=|cosx|+|sinx| then dydx at x=2π3 is:
  • 132
  • 0
  • 312
  • None of these
Evaluate limn[(1+1n2)(1+22n2)(1+32n2)......(1+n2n2)]1/n
  • 2e(π42)
  • 2e(π22)
  • 2e(π44)
  • 2e(π43)
The limit of xsin(e1x) as x0
  • is equal to 0
  • is equal to 1
  • is equal to e2
  • does not exist
If r=[2ϕ+cos2(2ϕ+π4)]12, then what is the value of the derivative of drdϕ at ϕ=π4?
  • 2(1π+1)12
  • 2(2π+1)2
  • (2π+1)12
  • 2(2π+1)12
The value of the constant α and β such that limx(x2+1x+1αxβ)=0 are respectively.
  • (1,1)
  • (1,1)
  • (1,1)
  • (0,1)
If the function f(x) satisfies limx1f(x)2x21=π, then limx1f(x)=
  • 2
  • 3
  • 1
  • 0
f(x)=log(ex(x2x+2)34)f(0)=
  • 14
  • 4
  • 34
  • 1
If f(x)=sec(3x), then f(3π4)=
  • 32
  • 322
  • 32
  • 322
  • 32
If y=f(x2+2) and f(3)=5, then dydx at x=1 is _____
  • 5
  • 25
  • 15
  • 10
If f(x) is a function such that f(x)+f(x)=0 and g(x)=[f(x)]2+[f(x)]2 and g(3)=8, then g(8)=_____
  • 0
  • 3
  • 5
  • 8
If limxx3+1x2+1(ax+b)=2, then
  • a=2 and b=1
  • a=1 and b=1
  • a=1 and b=1
  • a=1 and b=2
If y=tan1(11+x+x2)+tan1(1x2+3x+2)+tan1(1x2+5x+6)+....+ upto n terms then dydx at x=0 and n=1 is equal to
  • 12d
  • 12
  • 0
  • 13
limxπ/4tanx1cos2x is equal to
  • 1
  • 0
  • 2
  • 1
limx3=x3x29 is equal to
  • 1
  • 3
  • 3
  • 3
  • 0
What is limx0x2sin(1x) equal to ? 
  • 0
  • 1
  • 1/2
  • Limit does not exist.
The value of limxπ/62sin2x+sinx12sin2x3sinx1 is
  • 3
  • 3
  • 6
  • 0
If f(x)=|sinxcosxtanxx3x2x2x11|, then limx0f(x)x2 is
  • 1
  • 3
  • 1
  • Zero
If y=11+x+x2, then dydx is equal to
  • y2(1+2x)
  • (1+2x)y2
  • 1+2xy2
  • y(1+2x)
  • y2(1+2x)
If y=|cosx|+|sinx|, then dydx at x=2π3 is
  • 132
  • 0
  • 12(31)
  • None of these
Which one of the following statements is correct?
  • limx0(fog)(x) exists.
  • limx0(gof)(x) exists.
  • limx0(fog)(x)=limx0(gof)(x)
  • limx0+(fog)(x)=limx0(gof)(x)
Let   C(θ)=n=0cos(nθ)n!
Which of the following statements is FALSE? 
  • C(0).C(π)=1
  • C(0).C(π)>2
  • C(θ)>0 for all θR
  • C(θ)0 for all θR
limxπ6sin(xπ6)32cosx is equal to :
  • 0
  • 1(32)
  • 1
If limx0xasinbxsin(xc),a,b,c,R{0} exists and has non-zero value, then 
  • a,b,c are in A.P
  • a,b,c are in G.P
  • a,b,c are in H.P
  • none of these
If f(x)=|log|x||, then
  • f(x) is continuous and differentiable for all x in its domain
  • f(x) is continuous for all x in its domain but not differentiable at x=±1
  • f(x) is neither continuous nor differentiable at x=±1
  • None of the above
If y=acos(sin2x)+bsin(sin2x), then y+(2tan2x)y=
  • 0
  • 4(cos22x)y
  • 4(cos22x)y
  • (cos22x)y
limx3(x34)/(x+1)=
  • (4/23)
  • (2/23)
  • (1/8)
  • (23/4)
If f(x)=|cosxx12sinxx22x tanxx1|, then limx0f(x)x.
  • Exists and is equal to 2
  • Does not exist
  • Exist and is equal to 0
  • Exists and is equal to 2
ddxtan1(1x1+x)= ____________.
  • 21+x2
  • 11+x2
  • 11+x2
  • 21+x2
Differentiate the following w.r.t. x.
sinx logx.
  • sinxxcosxlogx
  • sinxx+cosxlogx
  • cosxx+cosxlogx
  • tanxx+cosxlogx
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers