Loading [MathJax]/jax/element/mml/optable/Arrows.js

CBSE Questions for Class 11 Engineering Maths Principle Of Mathematical Induction Quiz 1 - MCQExams.com

Statement-l: For every natural number n2, 11+12++1n>n.
Statement-2: For every natural number n2, n(n+1)<n+1
  • Statement-1 is true, Statement-2 is true; Statement -2 is  a correct explanation for Statement-1.
  • Statement-1 is true, Statement-2 is false.
  • Statement-1 is false, Statement-2 is true.
  • Statement-1 is true, Statement-2 is true; Statement-2 is  not a correct explanation for Statement-1.
Let S(k)=1+3+5+....+(2k1)=3+k2. Then which of the following is true?
  • Principle of mathematical induction can be used to prove the formula
  • S(k) S(k+1)
  • S(k) S (k + 1)
  • S (1) is correct
Mathematical Induction is the principle containing the set
  • R
  • N
  • Q
  • Z
Let P(n) be a statement and P(n)=P(n+1)  \forall n\in N, then P(n) is true for what values of n?
  • For all n
  • For all n>1
  • For all n>m , m being a fixed positive integer
  • Nothing can be said
State whether the  following  statement is true or false.
cos x  + cos 2x + .... + cos nx =
\dfrac{cos\left (\dfrac{n \, + \, 1 }{2}  \right )x  sin \dfrac{nx}{2}}{sin\dfrac{x}{2}}
  • True
  • False
1+3+5+....+(2n-1)=n^2.
  • True
  • False
A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Find the probability of drawing red ball is \dfrac 35
  • True
  • False
Let P(n) be the statement "3^n>n". If P(n) is true, P(n+1) is true.
  • True
  • False
Let P(n)= 5^{n}-2^{n}. P(n) is divisible by 3\lambda where \lambda and {n} both are odd positive integers, then the least value of n and \lambda will be
  • 13
  • 11
  • 1
  • 5
For every integer n\geq 1, (3^{2^{n}}-1) is always divisible by
  • 2^{n^2}
  • 2^{n+4}
  • 2^{n+2}
  • 2^{n+3}
\forall n\in N; x^{2n-1}+y^{2n-1} is divisible by?
  • x-y
  • x+y
  • xy
  • x^{2}+y^{2}
Let \mathrm{S}(\mathrm{K})=1+3+5+\ldots\ldots..+(2\mathrm{K}-1)=3+\mathrm{K}^{2}. Then which of the following is true? 
  • \mathrm{S}(1) is correct
  • \mathrm{S}(\mathrm{K})\Rightarrow \mathrm{S}(\mathrm{K}+1)
  • S(\mathrm{K})\neq S(K+1)
  • Principle of mathematical induction can be used to prove the formula
If n(n^{2}-1) is divisible by 24, then which of the following statements is true?
  • n can be any odd integral value.
  • n can be any integral value.
  • n can be any even integral value.
  • n can be any rational number.
If \forall m\in N, then 11^{m+ 2}+12^{2m-1} is divisible by
  • 121
  • 132
  • 133
  • None of these
If n is an even number, then the digit in the units place of 2^{2n}+1 will be 
  • 5
  • 7
  • 6
  • 1
If A = \begin{vmatrix} 1 &0 \\  1& 1 \end{vmatrix}B and I =\begin{vmatrix} 1 &0 \\ 0& 1 \end{vmatrix} ,then which one of the following holds for all n \geq  1, by
the principle of mathematical indunction 
  • A^{n}=nA-(n-1)l
  • A^{n}=2^{n-1}A-(n-1)l
  • A^{n}=nA+(n-1)l
  • A^{n}=2^{n-1}A+(n-1)l
Let P(n):1+\displaystyle \frac{1}{4}+\frac{1}{9}+\ldots..+\frac{1}{n^{2}}<2-\frac{1}{n} is true for
  • \forall n\in N
  • n=1
  • {n>1,\forall n\in N}
  • n>2
Let x > -1, then statement p(n):(1 + x)^{n} > 1 + nx, where   n \in N is true for
  • For all n \epsilon N.
  • For all n > 1.
  • For all n > 1, provided x \neq 0.
  • For all n > 2.
1.2 +2.2^2 +3.2^3+ .................+ n.2^n = (n-1)2^{n+1} + 2 is true for
  • Only natural number n \geq 3
  • All natural number n
  • Only natural number n \geq 5
  • None
n(n+1) (n+5) is a multiple of 3 is true for
  • All natural numbers n > 5
  • Only natural number 3 \leq n < 15
  • All natural numbers n
  • None
If n\in N, then n(n^2-1) is divisible by
  • 6
  • 16
  • 26
  • 24
Using mathematical induction,
\displaystyle \left ( 1 - \frac{1}{2^2} \right ) \left ( 1 - \frac{1}{3^2} \right ) \left ( 1 - \frac{1}{4^2} \right ) ......... \left ( 1 - \frac{1}{(n + 1)^2} \right )
  • \displaystyle \frac{n +2}{2(n + 1)}
  • \displaystyle \frac{n - 2}{2 (n - 1)}
  • \displaystyle \frac{n + 3}{2 (n + 1)}
  • \displaystyle \frac{n}{2 (n + 1)}
The product of five consecutive natural numbers is divisible by 
  • 10
  • 20
  • 30
  • 120
For all positive integers n, P(n) is true , and 2^{n-2}>3n, then which of the following is true?
  • P(3) is true.
  • P(5) is true.
  • If P(m) is true then P(m + 1) is also true.
  • If P(m) is true then P(m + 1) is not true.
\displaystyle \frac{1}{2} + \frac{1}{4}+ \frac{1}{8} + ......... + \frac{1}{2^n} = 1 - \frac{1}{2^n} is true for
  • Only natural number n \geq 3
  • Only natural number n \geq 5
  • Only natural number n < 10
  • All natural number n
If P(n) is statement such that P(3) is true. Assuming P(k) is true \Rightarrow P(k+1) is true for all k \geq 2, then P(n) is true.
  • For all n
  • For n \geq 3
  • For n \geq 4
  • None of these
1.3 + 3.5 + 5.7 + ........... + (2n -1) (2n + 1) = \displaystyle \frac{n (4n^2 + 6n -1)}{3} is true for
  • Only natural number n \geq 4
  • Only natural numbers 3 \leq n \leq 10
  • All natural numbers n
  • None
\forall n\in N, 2 \cdot 4^{2n + 1} + 3^{3n + 1} is divisible by
  • 7
  • 5
  • 11
  • 209
\forall n\in N, 3^{3n} - 26^{n} is divisible by
  • 24
  • 64
  • 17
  • none of these
7^{2n} + 3^{n - 1} \cdot 2^{3n - 3} is divisible by
  • 24
  • 25
  • 9
  • 13
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers