CBSE Questions for Class 11 Engineering Maths Principle Of Mathematical Induction Quiz 1 - MCQExams.com

Statement-l: For every natural number $$n\geq 2,\ \displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}$$.
Statement-2: For every natural number $$n\geq 2,\ \sqrt{n(n+1)}<n+1$$. 
  • Statement-1 is true, Statement-2 is true; Statement -2 is  a correct explanation for Statement-1.
  • Statement-1 is true, Statement-2 is false.
  • Statement-1 is false, Statement-2 is true.
  • Statement-1 is true, Statement-2 is true; Statement-2 is  not a correct explanation for Statement-1.
Let $$S(k) = 1 + 3 + 5 + .... + (2k - 1) = 3 + k^2$$. Then which of the following is true?
  • Principle of mathematical induction can be used to prove the formula
  • $$S (k)$$ $$\Rightarrow$$ $$S (k + 1)$$
  • $$S (k)$$ $${\nRightarrow}$$ $$S (k + 1)$$
  • $$S (1)$$ is correct
Mathematical Induction is the principle containing the set
  • R
  • N
  • Q
  • Z
Let $$P(n)$$ be a statement and $$P(n)=P(n+1)  \forall n\in N$$, then $$P(n)$$ is true for what values of $$n$$?
  • For all $$n$$
  • For all $$n>1$$
  • For all $$n>m$$ , $$m$$ being a fixed positive integer
  • Nothing can be said
State whether the  following  statement is true or false.
cos x  + cos 2x + .... + cos nx =
$$\dfrac{cos\left (\dfrac{n \, + \, 1 }{2}  \right )x  sin \dfrac{nx}{2}}{sin\dfrac{x}{2}}$$
  • True
  • False
$$1+3+5+....+(2n-1)=n^2$$.
  • True
  • False
A bag contains $$3$$ red and $$2$$ black balls. One ball is drawn from it at random. Find the probability of drawing red ball is $$\dfrac 35$$
  • True
  • False
Let $$P(n)$$ be the statement $$"3^n>n"$$. If $$P(n)$$ is true, $$P(n+1)$$ is true.
  • True
  • False
Let $$P(n)= 5^{n}-2^{n}$$. $$P(n)$$ is divisible by $$ 3\lambda$$ where $$\lambda$$ and $${n}$$ both are odd positive integers, then the least value of $$n$$ and $$\lambda$$ will be
  • $$13$$
  • $$11$$
  • $$1$$
  • $$5$$
For every integer $$n\geq 1, (3^{2^{n}}-1)$$ is always divisible by
  • $$2^{n^2}$$
  • $$2^{n+4}$$
  • $$2^{n+2}$$
  • $$2^{n+3}$$
$$\forall n\in N; x^{2n-1}+y^{2n-1}$$ is divisible by?
  • $$x-y$$
  • $$x+y$$
  • $$xy$$
  • $$x^{2}+y^{2}$$
Let $$\mathrm{S}(\mathrm{K})=1+3+5+\ldots\ldots..+(2\mathrm{K}-1)=3+\mathrm{K}^{2}$$. Then which of the following is true? 
  • $$\mathrm{S}(1)$$ is correct
  • $$\mathrm{S}(\mathrm{K})\Rightarrow \mathrm{S}(\mathrm{K}+1)$$
  • $$S(\mathrm{K})\neq$$ S(K$$+$$1)
  • Principle of mathematical induction can be used to prove the formula
If $$n(n^{2}-1)$$ is divisible by $$24$$, then which of the following statements is true?
  • $$n$$ can be any odd integral value.
  • $$n$$ can be any integral value.
  • $$n$$ can be any even integral value.
  • $$n$$ can be any rational number.
If $$\forall m\in N$$, then $$11^{m+ 2}+12^{2m-1}$$ is divisible by
  • $$121$$
  • $$132$$
  • $$133$$
  • None of these
If $$n$$ is an even number, then the digit in the units place of $$2^{2n}+1$$ will be 
  • $$5$$
  • $$7$$
  • $$6$$
  • $$1$$
If A = $$\begin{vmatrix}
1 &0 \\
 1& 1
\end{vmatrix}$$B and I =$$\begin{vmatrix}
1 &0 \\
0& 1
\end{vmatrix}$$ ,then which one of the following holds for all n $$\geq $$ 1, by
the principle of mathematical indunction 
  • $$A^{n}=nA-(n-1)l$$
  • $$A^{n}=2^{n-1}A-(n-1)l$$
  • $$A^{n}=nA+(n-1)l$$
  • $$A^{n}=2^{n-1}A+(n-1)l$$
Let $$P(n):1+\displaystyle \frac{1}{4}+\frac{1}{9}+\ldots..+\frac{1}{n^{2}}<2-\frac{1}{n}$$ is true for
  • $$\forall n\in N$$
  • $$n=1$$
  • $${n>1,\forall n\in N}$$
  • $$n>2$$
Let $$x > -1$$, then statement $$p(n):(1 + x)^{n} > 1 + nx$$, where  $$ n \in N$$ is true for
  • For all $$n \epsilon N$$.
  • For all $$n > 1$$.
  • For all $$n > 1$$, provided $$x \neq 0$$.
  • For all $$n > 2$$.
$$1.2 +2.2^2 +3.2^3+ .................+ n.2^n = (n-1)2^{n+1} + 2$$ is true for
  • Only natural number $$n$$ $$\geq$$ $$3$$
  • All natural number $$n$$
  • Only natural number $$n$$ $$\geq$$ $$5$$
  • None
$$n(n+1) (n+5)$$ is a multiple of $$3$$ is true for
  • All natural numbers $$n > 5$$
  • Only natural number $$3$$ $$\leq$$ $$n < 15$$
  • All natural numbers $$n$$
  • None
If $$n\in N$$, then $$n(n^2-1)$$ is divisible by
  • $$6$$
  • $$16$$
  • $$26$$
  • $$24$$
Using mathematical induction,
$$\displaystyle \left ( 1 - \frac{1}{2^2} \right ) \left ( 1 - \frac{1}{3^2} \right ) \left ( 1 - \frac{1}{4^2} \right ) ......... \left ( 1 - \frac{1}{(n + 1)^2} \right )$$
  • $$\displaystyle \frac{n +2}{2(n + 1)}$$
  • $$\displaystyle \frac{n - 2}{2 (n - 1)}$$
  • $$\displaystyle \frac{n + 3}{2 (n + 1)}$$
  • $$\displaystyle \frac{n}{2 (n + 1)}$$
The product of five consecutive natural numbers is divisible by 
  • 10
  • 20
  • 30
  • 120
For all positive integers $$n$$, $$P(n)$$ is true , and $$2^{n-2}>3n$$, then which of the following is true?
  • $$P(3)$$ is true.
  • $$P(5)$$ is true.
  • If $$P(m)$$ is true then $$P(m + 1)$$ is also true.
  • If $$P(m)$$ is true then $$P(m + 1)$$ is not true.
$$\displaystyle \frac{1}{2} + \frac{1}{4}+ \frac{1}{8} + ......... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$ is true for
  • Only natural number n $$\geq$$ 3
  • Only natural number n $$\geq$$ 5
  • Only natural number n < 10
  • All natural number n
If $$P(n)$$ is statement such that $$P(3)$$ is true. Assuming P(k) is true $$\Rightarrow$$ $$P(k+1)$$ is true for all $$k$$ $$\geq$$ $$2$$, then $$ P(n)$$ is true.
  • For all $$n$$
  • For $$n$$ $$\geq$$ $$3$$
  • For $$n$$ $$\geq$$ $$4$$
  • None of these
$$1.3 + 3.5 + 5.7 + ........... + (2n -1) (2n + 1) = \displaystyle \frac{n (4n^2 + 6n -1)}{3}$$ is true for
  • Only natural number n $$\geq$$ 4
  • Only natural numbers 3 $$\leq$$ n $$\leq$$ 10
  • All natural numbers n
  • None
$$\forall n\in N, 2 \cdot 4^{2n + 1} + 3^{3n + 1}$$ is divisible by
  • $$7$$
  • $$5$$
  • $$11$$
  • $$209$$
$$\forall n\in N, 3^{3n} - 26^{n}$$ is divisible by
  • $$24$$
  • $$64$$
  • $$17$$
  • none of these
$$7^{2n} + 3^{n - 1} \cdot 2^{3n - 3}$$ is divisible by
  • $$24$$
  • $$25$$
  • $$9$$
  • $$13$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers