MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Principle Of Mathematical Induction Quiz 1 - MCQExams.com
CBSE
Class 11 Engineering Maths
Principle Of Mathematical Induction
Quiz 1
Statement-l: For every natural number $$n\geq 2,\ \displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}$$.
Statement-2: For every natural number $$n\geq 2,\ \sqrt{n(n+1)}<n+1$$.
Report Question
0%
Statement-1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1.
0%
Statement-1 is true, Statement-2 is false.
0%
Statement-1 is false, Statement-2 is true.
0%
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
Explanation
$$ \displaystyle P\left( n \right) =\frac { 1 }{ \sqrt { 1 } } +\frac { 1 }{ \sqrt { 2 } } +...+\frac { 1 }{ \sqrt { n } } $$
$$ \displaystyle P\left( 2 \right) =\frac { 1 }{ \sqrt { 1 } } +\frac { 1 }{ \sqrt { 2 } } >\sqrt { 2 } $$
Let us assume that $$P(k)$$
$$ \displaystyle =\frac { 1 }{ \sqrt { 1 } } +\frac { 1 }{ \sqrt { 2 } } +...+\frac { 1 }{ \sqrt { k } } >\sqrt { k } $$ is true
$$ \displaystyle \therefore P\left( k+1 \right) =\frac { 1 }{ \sqrt { 1 } } +\frac { 1 }{ \sqrt { 2 } } +...+\frac { 1 }{ \sqrt { k } } +\frac { 1 }{ \sqrt { k+1 } } >\sqrt { k+1 } $$ has to be true.
$$ \displaystyle L.H.S.>\sqrt { k } +\frac { 1 }{ \sqrt { k+1 } } =\frac { \sqrt { k\left( k+1 \right)} +1 }{ \sqrt { k+1 } } $$
Since $$\sqrt { k\left( k+1 \right) } >k\quad \left( \forall k\ge 0 \right) $$
$$\displaystyle \therefore \frac { \sqrt { k\left( k+1 \right) }+1 }{ \sqrt { k+1 } } >\frac { k+1 }{ \sqrt { k+1 } } =\sqrt { k+1 } $$
Let $$P\left( n \right) =\sqrt { n\left( n+1 \right) } <\left( k+1 \right) $$
Statement-1 is correct.
$$P\left( 2 \right) =\sqrt { 2\times 3 } <3$$
If $$P\left( k \right) =\sqrt { k\left( k+1 \right) } <\left( k+1 \right) $$ is true
Now $$P\left( k+1 \right) =\sqrt { \left( k+1 \right) \left( k+2 \right)} <k+2 $$ has to be true
Since $$\left( k+1 \right) <k+2$$
$$\therefore \sqrt { \left( k+1 \right) \left( k+2 \right) } <\left( k+2 \right) $$
Hence Statement-2 is not correct explanation of Statement-1.
Let $$S(k) = 1 + 3 + 5 + .... + (2k - 1) = 3 + k^2$$. Then which of the following is true?
Report Question
0%
Principle of mathematical induction can be used to prove the formula
0%
$$S (k)$$ $$\Rightarrow$$ $$S (k + 1)$$
0%
$$S (k)$$ $${\nRightarrow}$$ $$S (k + 1)$$
0%
$$S (1)$$ is correct
Explanation
Putting $$k=1$$, we get L.H.S=1 and R.H.S=4. Hence $$A$$ and $$D$$ are incorrect.
Now, $$S\left( k+1 \right) =1+3+5+$$...$$+\left( 2k-1 \right) +\left( 2\left( k+1 \right) -1 \right) $$
$$\Rightarrow S\left( k+1 \right) =S\left( k \right) +\left( 2k+1 \right) $$ [Since
$$S\left( k \right) =1+3+5+$$...$$+\left( 2k-1 \right)$$]
$$\Rightarrow S\left( k+1 \right) =3+{ k }^{ 2 }+\left( 2k+1 \right) $$
$$\Rightarrow S\left( k+1 \right) =3+{ \left( k+1 \right) }^{ 2 }$$
$$B$$ is correct option.
Mathematical Induction is the principle containing the set
Report Question
0%
R
0%
N
0%
Q
0%
Z
Explanation
Mathematical induction is a method of mathematical proof typically used to establish a given statement for all natural numbers.
Let $$P(n)$$ be a statement and $$P(n)=P(n+1) \forall n\in N$$, then $$P(n)$$ is true for what values of $$n$$?
Report Question
0%
For all $$n$$
0%
For all $$n>1$$
0%
For all $$n>m$$ , $$m$$ being a fixed positive integer
0%
Nothing can be said
Explanation
Given, $$P(n) = P(n+1) \forall n\in N$$
Substituting $$n-1$$ in place of $$n$$,
$$P(n-1)=P(n)$$
Thus if $$P(k)$$ is true for some $$k$$ $$\in$$ $$N$$, then it is true for $$k-1$$ and $$k+1$$.
Thus, it is true $$\forall k$$ $$\in$$ $$N$$
State whether the following statement is true or false.
cos x + cos 2x + .... + cos nx =
$$\dfrac{cos\left (\dfrac{n \, + \, 1 }{2} \right )x sin \dfrac{nx}{2}}{sin\dfrac{x}{2}}$$
Report Question
0%
True
0%
False
Explanation
Using mathematical induction we can prove it.
$$1+3+5+....+(2n-1)=n^2$$.
Report Question
0%
True
0%
False
Explanation
Let $$P(n):1+3+5+....+(2n-1)=n^2$$
Step 1 :
Put $$n=1$$
Then, LHS = 1
RHS = $$1^2=1$$
Therefore, LHS = RHS
$$\implies P(n)$$ is true for $$n=1$$.
Step 2 :
Assume that $$P(n)$$ is true for $$n=k$$.
Therefore, $$1+3+5+....+(2k-1)=k^2$$
Adding $$2k+1$$ on both sides, we get,
$$1+3+5+....+(2k-1)+(2k+1)=k^2+(2k+1)=(k+1)^2$$
Therefore,
$$1+3+5+....+(2k-1)+(2(k+1)-1)=(k+1)^2$$
$$\implies P(n)$$ is true for $$n=k+1$$.
Therefore, by the principle of mathematical induction P(n) is true for all natural numbers n.
A bag contains $$3$$ red and $$2$$ black balls. One ball is drawn from it at random. Find the probability of drawing red ball is $$\dfrac 35$$
Report Question
0%
True
0%
False
Explanation
No o.f red balls $$=3$$
NO.off Black balls $$=2$$
Total no .of balls $$=2+3=5$$
Probability $$=\dfrac{3}{5}$$
Let $$P(n)$$ be the statement $$"3^n>n"$$. If $$P(n)$$ is true, $$P(n+1)$$ is true.
Report Question
0%
True
0%
False
Explanation
$$P(n)$$ is true.
$$3^n>n$$
$$3.3^n>3n$$
$$3^{n+1}> n+2n$$
$$3^{n+1} > n+1$$ $$[ 2n>1$$ for every $$n\in N \implies 2n+n >n+1$$ for every $$n\in N]$$
$$P(n+1)$$ is true.
Let $$P(n)= 5^{n}-2^{n}$$. $$P(n)$$ is divisible by $$ 3\lambda$$ where $$\lambda$$ and $${n}$$ both are odd positive integers, then the least value of $$n$$ and $$\lambda$$ will be
Report Question
0%
$$13$$
0%
$$11$$
0%
$$1$$
0%
$$5$$
Explanation
$$5^n-2^n$$ is divisible by $$5-2=3$$ always... Putting $$n=\lambda =1$$ which is the least odd positive integer, this works to be true.
Hence Option C
For every integer $$n\geq 1, (3^{2^{n}}-1)$$ is always divisible by
Report Question
0%
$$2^{n^2}$$
0%
$$2^{n+4}$$
0%
$$2^{n+2}$$
0%
$$2^{n+3}$$
Explanation
For $$n= 1$$, $$3^{2^{1}}-1 = 8 $$ , which is divisible by $$2^{n+2}$$.
Let us assume that $$3^{2^m} -1 $$ is divisible by $$2^{m+2}$$ for some integral value of $$m$$.
Let us consider the expression for $$m+1$$
$$3^{2^{m+1}} -1 $$
$$ = (3^{2^{m}} -1) \times (3^{2^{m}} +1)$$
The first term is divisible $$2^{m+2}$$ and the second term is also an even number.
Hence, the term is divisible by $$2^{m+2}$$.
Hence, by induction we can prove that it is true for all $$m$$.
$$\forall n\in N; x^{2n-1}+y^{2n-1}$$ is divisible by?
Report Question
0%
$$x-y$$
0%
$$x+y$$
0%
$$xy$$
0%
$$x^{2}+y^{2}$$
Explanation
$$\displaystyle P\left ( n \right )=x^{2n-1}+y^{2n-1}\forall n \epsilon N.
$$
Substitute $$n=1$$ to obtain $$\displaystyle p\left ( 1 \right )= x+y $$ ,Which is divisible by $$x+y$$.
For, $$n=2$$, we get $$\displaystyle P\left ( 2 \right )=x^{3}+y^{3}=\left ( x+y \right )\left ( x^{2}-xy+y^{2} \right ) $$ which is divisible by $$x+y$$.
With the help of induction we conclude that $$P(n)$$ will be divisible by $$x+y$$ for all $$n\in N$$.
Ans: B
Let $$\mathrm{S}(\mathrm{K})=1+3+5+\ldots\ldots..+(2\mathrm{K}-1)=3+\mathrm{K}^{2}$$. Then which of the following is true?
Report Question
0%
$$\mathrm{S}(1)$$ is correct
0%
$$\mathrm{S}(\mathrm{K})\Rightarrow \mathrm{S}(\mathrm{K}+1)$$
0%
$$S(\mathrm{K})\neq$$ S(K$$+$$1)
0%
Principle of mathematical induction can be used to prove the formula
Explanation
$$S\left( K \right) =1+3+5+...+\left( 2K-1 \right) =3+{ K }^{ 2 }$$
Put $$K=1$$ in both sides
$$\therefore L.H.S=1$$ and $$R.H.S=3+1=4$$
$$\Rightarrow L.H.S\neq R.H.S$$
Put $$\left( K+1 \right) $$ on both sides in the place of $$k$$
$$L.H.S=1+3+5+...+\left( 2K-1 \right) +\left( 2K+1 \right) $$
and $$R.H.S=3+{ \left( K+1 \right) }^{ 2 }=3+{ K }^{ 2 }+2K+1$$
Let $$L.H.S = R.H.S$$
$$\Rightarrow 1+3+5+...+\left( 2K-1 \right) +\left( 2K+1 \right) =3+{ K }^{ 2 }+2K+1\\ \Rightarrow 1+3+5+...+\left( 2K-1 \right) =3+{ K }^{ 2 }$$
If $$S(K)$$ is true, then $$S(K+1)$$ is also true.
Hence $$S\left( K \right) \Rightarrow S\left( K+1 \right) $$
If $$n(n^{2}-1)$$ is divisible by $$24$$, then which of the following statements is true?
Report Question
0%
$$n$$ can be any odd integral value.
0%
$$n$$ can be any integral value.
0%
$$n$$ can be any even integral value.
0%
$$n$$ can be any rational number.
Explanation
$$n({ n }^{ 2 }-1)\quad =\quad n*(n-1)*(n+1)$$
If $$n$$ is even, then $$n-1$$ and $$n+1$$ will be odd, therefore $$n({ n }^{ 2 }-1)$$ is not divisible by 4 and therefore not divisible by 24.
Hence $$n$$ has to be an odd integer.
If $$\forall m\in N$$, then $$11^{m+ 2}+12^{2m-1}$$ is divisible by
Report Question
0%
$$121$$
0%
$$132$$
0%
$$133$$
0%
None of these
Explanation
To find the divisor of $${ 11 }^{ m+2 }+{ 12 }^{ 2m-1 }$$ by mathematic induction, the first step is to check for the smallest natural number, i.e; for $$m=1$$. So, this reduces to $${ 11 }^{ 3 }+{ 12 }^{ 1 }$$ or $${ 11 }^{ 4 }+1$$.
So, the number when divided by $$11$$ leaves remainder 1.
So, we can knock out options $$A$$ and $$B$$ as $$121$$ as well as $$132$$ are both divisible by 11 and hence their multiples will always be divisible by 11.
Now, we have to check the divisibility of
$${ 11 }^{ m+2 }+{ 12 }^{ 2m-1 }$$ by $$133$$. For $$m=1$$,
$${ 11 }^{ 4 }+1$$ is not divisible by $$133$$.
So, we can knock out option $$C$$.
Hence, $$D$$ is correct.
If $$n$$ is an even number, then the digit in the units place of $$2^{2n}+1$$ will be
Report Question
0%
$$5$$
0%
$$7$$
0%
$$6$$
0%
$$1$$
Explanation
Since $${ 2 }^{ 2n }$$ is even therefore $${ 2 }^{ 2n }+1$$ is odd,
therefore digit at unit place should be odd, rejecting option 3.
Put n = 2, we get $${ 2 }^{ 2n } +1$$ = 17,
hence digit should be 7
If A = $$\begin{vmatrix}
1 &0 \\
1& 1
\end{vmatrix}$$B and I =$$\begin{vmatrix}
1 &0 \\
0& 1
\end{vmatrix}$$ ,then which one of the following holds for all n $$\geq $$ 1, by
the principle of mathematical indunction
Report Question
0%
$$A^{n}=nA-(n-1)l$$
0%
$$A^{n}=2^{n-1}A-(n-1)l$$
0%
$$A^{n}=nA+(n-1)l$$
0%
$$A^{n}=2^{n-1}A+(n-1)l$$
Explanation
$$A=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\\ { A }^{ 2 }=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\\ { A }^{ 3 }=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}\\ \therefore { A }^{ n }=\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$$
and $$nA=n\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} n & 0 \\ n & n \end{bmatrix}$$
$$\left( n-1 \right) I=\left( n-1 \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}\\ \therefore nA-\left( n-1 \right) I=\begin{bmatrix} n & 0 \\ n & n \end{bmatrix}-\begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}={ A }^{ n }$$
Let $$P(n):1+\displaystyle \frac{1}{4}+\frac{1}{9}+\ldots..+\frac{1}{n^{2}}<2-\frac{1}{n}$$ is true for
Report Question
0%
$$\forall n\in N$$
0%
$$n=1$$
0%
$${n>1,\forall n\in N}$$
0%
$$n>2$$
Explanation
For $$n=2,P\left( n \right) =1+\dfrac { 1 }{ { 2 }^{ 2 } } =1+\dfrac { 1 }{ 4 } =\dfrac { 5 }{ 4 } =1.25<2-\dfrac { 1 }{ 2 } =\dfrac { 3 }{ 2 } =1.5\\ P(3)=1+\dfrac { 1 }{ 4 } +\dfrac { 1 }{ 9 } =1.36<1.67$$
$$\therefore P(2), P(3)$$ is true and so on.
Let us assume $$P(n)$$ is true.
$$P\left( n+1 \right) =1+\dfrac { 1 }{ 4 } +.....+\dfrac { 1 }{ { n }^{ 2 } } +\dfrac { 1 }{ { \left( n+1 \right) }^{ 2 } } <2-\dfrac { 1 }{ n } +\dfrac { 1 }{ { \left( n+1 \right) }^{ 2 } } \\ =2-\left\{ \dfrac { 1 }{ n } -\dfrac { 1 }{ { \left( n+1 \right) }^{ 2 } } \right\} =2-\dfrac { { n }^{ 2 }+n+1 }{ n{ \left( n+1 \right) }^{ 2 } } =2-\dfrac { { n }^{ 2 }+n }{ n{ \left( n+1 \right) }^{ 2 } } -\dfrac { 1 }{ n{ \left( n+1 \right) }^{ 2 } } $$
$$=2-\dfrac { 1 }{ n+1 } -\dfrac { 1 }{ n{ \left( n+1 \right) }^{ 2 } } <2-\dfrac { 1 }{ n+1 } $$
$$\therefore P(n+1)$$ is true.
Thus, $$P(n)$$ is true for all $$n>1.$$
Let $$x > -1$$, then statement $$p(n):(1 + x)^{n} > 1 + nx$$, where $$ n \in N$$ is true for
Report Question
0%
For all $$n \epsilon N$$.
0%
For all $$n > 1$$.
0%
For all $$n > 1$$, provided $$x \neq 0$$.
0%
For all $$n > 2$$.
Explanation
p(1) :$$ (1 + x)^{1}$$ > 1 + x is false
p(2) :$$ (1 + x)^{2} > 1 + 2x \Rightarrow x^{2}$$ > 0 is true when $$x \neq 0$$
p(3) :$$ (1 + x)^{3} > 1 + 3x \Rightarrow x^{2}$$ > 0 is true when$$ x \neq 0$$
Let p(k) $$ (1 + x)^{k}$$ > 1 + k x is true for some $$k \epsilon N$$, k >1
$$\Rightarrow (1+x)^{k+1}$$ >(1+kx) (1+x)
$$\Rightarrow (1+x)^{k+1} > 1+(k+1)x+kx^{2} > 1 +(k+1)x, x \neq 0$$
$$\Rightarrow$$p(k+1) is true whenever p(k) is true
so by principle of mathematical induction p(n) is true for all n > 1 provided $$x \neq 0$$
$$1.2 +2.2^2 +3.2^3+ .................+ n.2^n = (n-1)2^{n+1} + 2$$ is true for
Report Question
0%
Only natural number $$n$$ $$\geq$$ $$3$$
0%
All natural number $$n$$
0%
Only natural number $$n$$ $$\geq$$ $$5$$
0%
None
Explanation
Let P(n) be the given statement i.e. $$P(n) : 1.2 + 2.2^2 + 3.2^3+ ......... + n.2^n = (n-1)2^{n+1}+2$$
Putting n $$=$$ 1, LHS $$=$$ 1.2 $$=$$ 2; RHS $$=$$ 0+2 $$=$$ 2
$$\therefore$$ P(n) is true for $$n=1$$
Assume that P(n) is true for $$n=k$$
i.e. P(k) is true i.e. $$1.2^2+ 2.2^2 + 3.2^3 + ........... + k.2$$ $$^k$$ Replacing k by k + 1, we get the next term $$=(k+1)2^{k+1}$$
Adding it to both sides
$$LHS = 1.2 +2.2^2 + 3.2^3+ ......... + k.2^{k}+ (k+1)2^{k+1}$$
$$RHS = (k-1)2^{k+1}+2 + (k+1)2^{k+1}$$
$$=2^{k+1}[k-1+k+1]+2=2k2^{k+1}+2=(k+1-1)2^{k+1+1}+2$$
This proves P(n) true for $$n= k+1$$
Thus P(k+1) is true whenever P(k) is true
Hence. P(n) is true for all n $$\in$$ N
$$n(n+1) (n+5)$$ is a multiple of $$3$$ is true for
Report Question
0%
All natural numbers $$n > 5$$
0%
Only natural number $$3$$ $$\leq$$ $$n < 15$$
0%
All natural numbers $$n$$
0%
None
Explanation
Let the statement be denoted by p(n) i.e.,
P(n) : n(n+1) (n+5) is a multiple of 3
For n $$=$$ 1, n(n+1) (n+5) $$=$$ 1.2.6 $$=$$ 12 $$=$$ 3.4
P(n) is true for n $$=$$ 1
Suppose p(k) is true for n $$=$$ k i.e.
k(k+1) (k+5) =3m (let) or k$$^3$$ + 6k$$^2$$ + 5k $$=$$ 3m ........... (i)
Replacing k by k+1, we get
(k+1) (k+2) (k+6) $$=$$ k (k$$^2$$ +8k +12) + (k$$^2$$ + 8k + 12)
$$k^3 + 9k^2 +20 k +12 = (k^3 + 6k^2 + 5k) + (3k^2 +15k + 12)$$
$$= 3m + 3k^2 +15k + 12$$ [from (i)]
$$= 3(m + k^2 + 5k +4)$$
i.e. (k+1) (k+2) (k+6) is a multiple of 3
i.e. P(k+1) is multiple of 3, if P(k) is a multiple of 3
i.e. P(k+1) is true whenever P(k) is true.
Hence P(n) is true for all n $$\in$$ N
If $$n\in N$$, then $$n(n^2-1)$$ is divisible by
Report Question
0%
$$6$$
0%
$$16$$
0%
$$26$$
0%
$$24$$
Explanation
$${ n }{ (n }^{ 2 }-1)={ n }{ (n }-1){ (n }+1)$$
One of the $$n$$, $$n+1$$ and $$n-1$$ will be a multiple of $$3$$.
Since $$n-1$$, $$n$$ and $$n+1$$ are three consecutive integers, therefore at least one of them will be divisible by $$2$$.
Therefore $${ n }{ (n }^{ 2 }-1)$$ is divisible by $$6$$.
Option d can be rejected by putting $$n = 2$$
Using mathematical induction,
$$\displaystyle \left ( 1 - \frac{1}{2^2} \right ) \left ( 1 - \frac{1}{3^2} \right ) \left ( 1 - \frac{1}{4^2} \right ) ......... \left ( 1 - \frac{1}{(n + 1)^2} \right )$$
Report Question
0%
$$\displaystyle \frac{n +2}{2(n + 1)}$$
0%
$$\displaystyle \frac{n - 2}{2 (n - 1)}$$
0%
$$\displaystyle \frac{n + 3}{2 (n + 1)}$$
0%
$$\displaystyle \frac{n}{2 (n + 1)}$$
Explanation
$$\displaystyle \left ( 1 - \dfrac{1}{2^2} \right ) \left ( 1 - \dfrac{1}{3^2} \right ) \left ( 1 - \dfrac{1}{4^2} \right ) ......... \left ( 1 - \dfrac{1}{(n + 1)^2} \right )$$
nth term is $$1-\dfrac{1}{(n+1)^2}$$
for n=1 =>$$\dfrac{1}{(n+1)^2}$$=$$1-\dfrac{1}{4}$$ =$$\dfrac{3}{4}$$
for n-1 series will be
$$\left( 1-\dfrac { 1 }{ 2^{ 2 } } \right) \left( 1-\dfrac { 1 }{ 3^{ 2 } } \right) \left( 1-\dfrac { 1 }{ 4^{ 2 } } \right) .........\left( 1-\dfrac { 1 }{ (n+1-1)^{ 2 } } \right) \left( 1-\dfrac { 1 }{ (n+1)^{ 2 } } \right) $$
On simplyfying
$$\left( \dfrac { 3 }{ { 2 }^{ 2 } } \right) \left( \dfrac { 8 }{ { 3 }^{ 2 } } \right) \left( \dfrac { 15 }{ { 4 }^{ 2 } } \right) ........\left( \dfrac { (n+1)(n-1) }{ { n }^{ 2 } } \right) \left( \dfrac { n(n+2) }{ { (n+1) }^{ 2 } } \right) $$
OR
$$\left( \dfrac { 3 }{ { 2 }^{ 2 } } \right) \left( \dfrac { 2*4 }{ { 3 }^{ 2 } } \right) \left( \dfrac { 3*5 }{ { 4 }^{ 2 } } \right) ........\left( \dfrac { (n+1)(n-1) }{ { n }^{ 2 } } \right) \left( \dfrac { n(n+2) }{ { (n+1) }^{ 2 } } \right) $$
Now all terms will cancel out with each other from denominator to numinator only $$\dfrac{1}{2}$$ from first term and $$(\dfrac{n+2}{n+1})$$ from last term will remain
Therefore, Answer is $$\dfrac{1}{2}(\dfrac{n+2}{n+1})$$
The product of five consecutive natural numbers is divisible by
Report Question
0%
10
0%
20
0%
30
0%
120
Explanation
Let $$k$$ consecutive natural number be $$(n+1), (n+2)........,(n+k)$$
Thus their product is, $$P = (n+1)(n+2)(n+3).........(n+k)$$
$$\Rightarrow P=\dfrac{n!(n+1)(n+2)........(n+k)}{n!} =\dfrac{(n+k)!}{n!k!}\times k!= ^{n+k}C_k\times k! =k!\times $$ Integer
Hence the product of $$k$$ natural number is always divisible by $$k!$$
Here, given $$k=5$$, so $$k! =120$$ which is divisible by $$10,20,30,120$$
For all positive integers $$n$$, $$P(n)$$ is true , and $$2^{n-2}>3n$$, then which of the following is true?
Report Question
0%
$$P(3)$$ is true.
0%
$$P(5)$$ is true.
0%
If $$P(m)$$ is true then $$P(m + 1)$$ is also true.
0%
If $$P(m)$$ is true then $$P(m + 1)$$ is not true.
Explanation
$$2^{n-2}>3n$$
Put $$n=3$$
$$2\ngtr 6$$
Hence, P(3) is not true.
Put $$n=5$$
$$8\ngtr 15$$
Hence, P(3) is not true.
Let $$P(m)$$ is true i.e.
$$2^{m-2}>3m$$
Now, we will check for $$P(m+1)$$
Consider , $$2^{m-1}$$
$$=2^{m-2}.2$$
$$>2(3m)=6m=3m+3m $$
$$>3m+3$$
Hence, $$2^{m-1}>3(m+1)$$
Hence, $$P(m+1)$$ is true.
$$\displaystyle \frac{1}{2} + \frac{1}{4}+ \frac{1}{8} + ......... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$ is true for
Report Question
0%
Only natural number n $$\geq$$ 3
0%
Only natural number n $$\geq$$ 5
0%
Only natural number n < 10
0%
All natural number n
Explanation
Let P(n)$$: \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .......... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$
Putting $$n=1, LHS = \frac{1}{2} , RHS = 1 - \frac{1}{2} = \frac{1}{2}$$ i.e., LHS $$=$$ RHS $$= \frac{1}{2}$$
$$\therefore$$ P(n) is true for n$$=$$ 1.
Suppose P(n) is true for n$$=$$ k
$$\therefore \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ......... + \frac{1}{2^k} = 1 - \frac{1}{2^k}$$
last term $$= \displaystyle \frac{1}{2^k}$$; Replacing k by k+1, last term $$=\displaystyle \frac{1}{2^{k+1}}$$
Adding $$\displaystyle \frac{1}{2^{k+1}}$$ to both sides,
$$LHS = \displaystyle \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ........ + \frac{1}{2^k}+ \frac{1}{2^{k+1}}$$
$$RHS = 1 - \displaystyle \frac{1}{2^k} + \frac{1}{2^{k+1}}=1-\dfrac{1}{2^k} \left ( 1 - \frac{1}{2} \right ) = 1 - \frac{1}{2^k} \cdot \frac{1}{2} = 1 - \frac{1}{2^{k+1}}$$
This shows P(n) is true for n $$=$$ k+1
Thus P(k+1) is true whenever P(k) is true
Hence, P(n) is true for all n $$\in$$ N
If $$P(n)$$ is statement such that $$P(3)$$ is true. Assuming P(k) is true $$\Rightarrow$$ $$P(k+1)$$ is true for all $$k$$ $$\geq$$ $$2$$, then $$ P(n)$$ is true.
Report Question
0%
For all $$n$$
0%
For $$n$$ $$\geq$$ $$3$$
0%
For $$n$$ $$\geq$$ $$4$$
0%
None of these
Explanation
Given $$P (3)$$ is true.
Assume $$P(k)$$ is true $$\Rightarrow$$ $$P(k+1)$$ is true means if $$P(3)$$ is true $$\Rightarrow$$ $$P(4)$$ is true $$\Rightarrow$$ $$P(5)$$ is true and so on. So statement is true for all $$n\geq3$$.
$$1.3 + 3.5 + 5.7 + ........... + (2n -1) (2n + 1) = \displaystyle \frac{n (4n^2 + 6n -1)}{3}$$ is true for
Report Question
0%
Only natural number n $$\geq$$ 4
0%
Only natural numbers 3 $$\leq$$ n $$\leq$$ 10
0%
All natural numbers n
0%
None
Explanation
Le P(n) be the given statement
i.e. P(n) : 1.3 + 3.5 + 5.7 + ........... + (2n -1)(2n+1)
$$=\displaystyle \frac{n (4n^2 + 6n -1)}{3}$$
Putting $$n=1, L.H.S. = 1.3 = 3$$ and $$RHS = \displaystyle \frac{1 (4.1^2 + 6.1 -1)}{3}$$
$$ = \displaystyle \frac{4 + 6 -1}{3} = \frac{9}{3} = 3$$
LHS $$=$$ RHS
$$\therefore$$ P(n) is true for n $$=$$ 1
Assume that P(n) is true for n $$=$$ k
i.e., p(k) is true
i.e., P(k) : 1.3 + 3.5 + 5.7 + ............ + (2k-1)(2k+1)
$$= \displaystyle \frac{k (4k^2 + 6k -1)}{3}$$
Last term $$= $$ (2k -1)(2k +1)
Replacing k by (k+1), we get
$$[2(k+1)-1] [2 (k+1)+1]= (2k+1)(2k + 3)$$
$$\therefore $$ Adding (2k+1)(2k+3) on both sides.
$$\therefore LHS = 1.3 + 3.5 + 5.7 + ........... + (2k-1) (2k +1) + (2k +1) (2k +3)$$
$$R.H.S = \displaystyle \frac{k (4k^2 + 6k -1)}3{} + (2k +1) (2k +3)$$
$$ = \displaystyle \frac{(4k^3 + 6k^2 - k) + 3 (2k +1) (2k +3)}{3}$$
$$ = \displaystyle \frac{4k^3 + 18k^2 +23 +9}{3}$$
$$= \displaystyle \frac{(k+1) (4k^2 + 14 k +9)}{3}$$
$$ = \displaystyle \frac{(k+1)(4 (k+1)^2 + 6 (k+1)-1)}{3}$$ ............ (iii)
Thus, P(n) is true for n $$=$$ k + 1
$$\therefore $$ P(k+1) is true whenever P(k) is true
Hence, by P(n) is true for all n $$\in$$ N
$$\forall n\in N, 2 \cdot 4^{2n + 1} + 3^{3n + 1}$$ is divisible by
Report Question
0%
$$7$$
0%
$$5$$
0%
$$11$$
0%
$$209$$
Explanation
For $$n = 1$$, we have
$$2 \cdot 4^{2n + 1} + 3^{3n + 1} = 2 \times 4^3 + 3^4 = 209$$, which is divisible by $$11$$
For $$n = 2$$, we have
$$2 \cdot 4^{2n + 1} + 3^{3n + 1} = 2 \times 4^5 + 3^7 = 4235$$, which is divisible by $$11$$
Hence, options (c) is true.
$$\forall n\in N, 3^{3n} - 26^{n}$$ is divisible by
Report Question
0%
$$24$$
0%
$$64$$
0%
$$17$$
0%
none of these
Explanation
Put $$n=2$$
$$3^{3n}-26^n = 3^6-26^2 =53$$ which is not divisible by any $$24,64,17$$
Hence option 'D' is correct choice.
$$7^{2n} + 3^{n - 1} \cdot 2^{3n - 3}$$ is divisible by
Report Question
0%
$$24$$
0%
$$25$$
0%
$$9$$
0%
$$13$$
Explanation
Let $$P(1) = 7^{2n} + 3^{n - 1} \cdot 2^{3n - 3}$$
$$P(1) = 50\Rightarrow $$ Divisible by $$25$$
Hence option 'B' is the correct choice.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page