Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 10 - MCQExams.com

The sum of n=1tan1(2n2+n+4) is equal to-
  • tan12
  • π2+tan12
  • π2tan12
  • π4
496:204::329:?
  • 90
  • 110
  • 115
  • 135
If sin4α.cos2α=3r=0Cr.cos(2rα) then C0+C1+C2+C3=
  • 0
  • 3
  • 4
  • 7
If Sn=74.1.2+1042.2.3+1343.3.4+.... then S is equal to?
  • 52
  • 98
  • 32
  • 1
Find the missing number.
1306969_c830724f37e04dcebf1e546f99ec639f.png
  • 74
  • 62
  • 91
  • 97
The sum of the following series 1+6+9(12+22+32)7+12(12+22+32+42)9+15(12+22+....+52)11+..... up to 15 terms is:
  • 7820
  • 7830
  • 7520
  • 7510
The value of the series 13!+25!+37!+.....  to    is equal to 
  • 12e
  • 12e
  • 32e
  • 45e
The sum of the series
  9522.1+13533.2+17544.3..........  Infinite terms
  • 125
  • 15
  • Not a finite number
  • 95
The sum to infinity of the series 1+23+632+1033+1434+.... is
  • 3
  • 4
  • 6
  • 2
If x1,x2,.... are in H.P and x1,2,x20 are in G.P, then 191xr.xr+1= 
  • 76
  • 80
  • 84
  • 70
The value of 14tanπ8+18tanπ16+116tanπ32+...... terms is equal to -
  • 5π12
  • 3π+12
  • 2π12
  • 4π14
Find the missing number
1312792_39895e31d00e4a2a83fc35377622c5be.png
  • 74
  • 62
  • 91
  • 97
If an=nr=01nCr then nr=0rnCr equals
  • (n1)an
  • nan
  • 12nan
  • None of these
Find the sum of first 15 terms of the sequence whose nth term is 3+4n.
  • 525
  • 425
  • 495
  • Noneofthes
If in a series tn=n+1(n+2)! then 10n=0tn is equal to?
  • 1110!
  • 1111!
  • 1112!
  • None of these
Let nr=1r4=f(n), then nr=1(2r1)4 is equal to
  • f(2n)16f(n)
  • f(2n)+7f(n)
  • f(2n+1)8f(n)
  • none of these
If the sum of the first 15 terms of the series 343+1123+2143+33+3343+........... is equal to 225 k. then k is equal to:
  • 9
  • 27
  • 108
  • 54
C1+2C2+3C3+......+nCn is equal to
  • 2n1
  • 2n+1
  • n.2n1
  • n.2n+1
insert the missing number:  5,8,12,17,23,___,38 
  • 29
  • 30
  • 32
  • 25
The sum of the series 1+logex1!+(logex)22!+........ is 
  • x
  • x2
  • x3
  • none of these
If x<1, then 11+x+2x1+x2+4x31+x4+.........=
  • x
  • 11+x
  • 11x
  • 1x
The sum of the series 1+2(1 +1/n)+ 3(1+1/n)2+....isgivenby
  • n2+1
  • n(n+1)
  • n(1+1/n)2
  • n2
The sum of the series 1+1+22+1+2+33+ to n terms is
  • n(n+1)2
  • n(n+3)4
  • n(n+1)+n4
  • n(n1)2
If nk=2cos1(1+(k1)(k+2)(k+1)kk(k+1))=120πλ,then
  • number of even divisors of λ is 24
  • Sum of proper divisors of λ is 2418.
  • Sum of proper divisors of λ is 197.
  • number of ways in which λ can be expressed as product of two co-prime factors is 4
What is the next number in the series 2,12,36,80,150?
  • 194
  • 210
  • 252
  • 258
The sum of the first n terms of the series 12+2.22+32+2.42+52+2.62+... is n(n+1)22 when n is even. When n is odd the sum is
  • 3n(n+1)2
  • n2(n+1)2
  • n(n+1)24
  • [n(n+1)2]2
Value of 1+13+231+2+13+23+331+2+3+...+13+23+......1531+2+.....+1512(1+2+.....+15) is?
  • 840
  • 720
  • 680
  • 620
Find the sum of the following series to n terms:
1×2+2×3+3×4+4×5+...
  • n4(n1)(n+2)
  • n3(n1)(n2)
  • n2(n1)(n+1)
  • n3(n+1)(n+2)
Find the sum of the following series to n terms:
1+(1+2)+(1+2+3)+(1+2+3+4)+...
  • n6(n+1)(n+2)
  • n6(n1)(n2)
  • n6(n+1)(n1)
  • None of these
5,5,5,... forms a ______
  • Series
  • Sequence
  • Progression
  • None of the above
Whole numbers from a sequence/progression, as they are formed by the fixed rule of adding 1 to previous whole number.
  • True
  • False
State true/false:
3,4,5,6,7,...... forms a progression. As they are formed by the rule n+1
  • True
  • False
Find the sum of Arithmetic means of 3,9 and 12,8.

  • 6
  • 9
  • 20
  • 16
The arithmetic mean of 4 and 14 is 
  • 9
  • 18
  • 10
  • 4
If AM of two numbers a and 17 isThen a is ___
  • 15
  • 13
  • 17
  • None of the above
Insert an arithmetic mean between 7 and 21
  • 10
  • 14
  • 28
  • 30
Arithmetic mean of two numbers a+d and a-d is 
  • a
  • b
  • Cannot be determined
  • None of the above
Sum of the series S=1222+3242+.....20022+20032 is
  • 2007006
  • 1005004
  • 2000506
  • 1005040
The sum of n terms of the series 1222+3242+5262+... is 
  • n(n+1)2 if n is even
  • n(n+1)2 if n is odd
  • n(n+1) if n is even
  • n(n+1)(2n+1)6 if n is odd
131+13+231+3+13+23+331+3+5+.n terms =
  • n(2n2+9n+13)24
  • n(2n3+9n+13)8
  • n(n2+9n+13)24
  • n(n2+9n+13)8

Observe the following lists List I and  List II

(A) n=0xn(logea)nn!                                     (1)exex2
(B) n=0x2n(2n)!                                                (2)eax
(C) n=0x2n+1(2n+1)!=                                    (3)ax
(D) n=0(1)n.(ax)nn!                                  (4)axax2
                                                                       (5)ex+ex2
The correct match of List I to List II is:
  • A - 1, B - 4, C - 3, D - 5
  • A - 4, B - 2, C - 1, D - 3
  • A - 3, B - 5, C - 1, D - 2
  • A - 2, B - 3, C - 5, D - 4
 Sum  the  series  13+33+53+..........  to  n terms  is
  • n2(2n21)
  • n(2n21)
  • n(2n2+1)
  • n2(2n2+1)
If f(r)=1+12+13+.....+1r and f(0)=0, then value of nr=1(2r+1)f(r) is
  • n2f(n)
  • (n+1)2f(n+1)n2+3n+22
  • (n+1)2f(n)n2+n+12
  • (n+1)2f(n)
If n is an odd integer greater than or equal to 1, then the value of n3(n1)3+(n2)3....+(1)n113, is
  • (n+1)2(2n1)4
  • (n1)2(2n1)4
  • (n+1)2(2n+1)4
  • (n+1)2(2n+1)8
The sum to n terms of the series 312+512+22+712+22+32+... is
  • 6nn+1
  • 9nn+1
  • 12nn+1
  • 3nn+1
The sum of the first n terms of the series 12+222+32+242+52+262+..... is n(n+1)22 when n is even. 
When n is odd, then the sum is
  • 3n(n+1)2
  • n(n+1)24
  • n(n+1)22
  • n2(n+1)2
The sum of n terms of the series 1+(1+a)+(1+a+a2)+(1+a+a2+a3)+.... is
  • n1+a1an(1a)2
  • n1a+a(1an)(1a)2
  • n1a+a(1+an)(1a)2
  • none of the above
ABCD is a square of length a, aϵN, a>Let L1L2L3,... be points on BC such that BL1=L1L2=L2L3=...=1 and M1M2M3,... be points on CD such that CM1=M1M2=M2M3=...=1. Then a1n=1(ALn2+LnMn2) is equal to
  • 12a(a1)2
  • 12a(a1)(4a1)
  • 12a(a1)(2a1)(4a1)
  • none of these
If nr=1tr=n(n+1)(n+2)(n+3)8, then limnnr=11tr
is equal to: 
  • 18
  • 14
  • 12
  • 1
Let x, y, z be three positive prime numbers. The progression in which xyz can be three terms (not necessarily consecutive) is
  • AP
  • GP
  • HP
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers