Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 6 - MCQExams.com

6,10,18,34,66
The first number in the list above is 6. Determine a rule for finding each successive number in the list.
  • Add 4 to the preceding number.
  • Take 12 of the preceding number and then add 7 to that result.
  • Double the preceding number and then subtract 2 from that result.
  • Subtract 2 from the preceding number and then double that result.
  • Triple the preceding number and then subtract 8 from that result.
The value of the sum 1.2.3+2.3.4+3.4.5+... upto n terms =
  • 16n2(2n2+1)
  • 16(n21)(2n1)(2n+3)
  • 18(n2+1)(n2+5)
  • 14n(n+1)(n+2)(n+3)
m,2m,4m,...
The first term in the sequence above is m, and each term thereafter is equal to twice the previous term. If m is an integer, which of the following could NOT be the sum of the first four terms of this sequence?
  • 26
  • 15
  • 45
  • 75
  • 120
Identify the missing integer: 9,45, ____,1125,5625...
  • 220
  • 223
  • 224
  • 225
The terms of a sequence are defined by an=3an1an2 for n>2. Find the value of a5 given that a1=4 and a2=3.
  • 12
  • 23
  • 25
  • 31
  • 36
For all numbers a and b, let ab be defined by ab=ab+a+b. Then for the numbers x, y and z, which of the following is/are true?
I. xy=yx
II. (x1)(x+1)=(xx)1
III. x(y+z)=(xy)+(xz)
  • I only
  • II only
  • III only
  • I and II only
  • I, II, and III
The sum of 1 st n terms of the series
121+12+221+2+12+22+321+2+3+........
  • n+23
  • n(n+2)3
  • n(n2)3
  • n(n2)6
If mn=m+(m1)+(m2)+......+(mn), evaluate 75.
  • 25
  • 20
  • 27
  • 18
N=a2+b2 is a three-digit number which is divisible bya = 10x + y and b = 10x + z, where z is a prime number, and x and y are natural numbers. If a + b = 31, find the value of N.
  • 565
  • 485
  • 505
  • 485 or 505
If ab=6×a3×b, evaluate (53)20
  • 2
  • 41
  • 66
  • 1
The sum of the series,
12.32+23.422+34.523+...... to n terms is _____.
  • 2n+1n+2+1
  • 2n+1n+21
  • 2n+1n+2+2
  • 2n+1n+22
The value of the infinite series 12+22|3_+12+22+32|4_+12+22+33+42|5_........ is
  • e
  • 5e
  • 5e612
  • 5e6
Let S denote the sum of the infinite series 1+82!+213!+404!+655!+........ Then
  • S<8
  • S>12
  • 8<S<12
  • S=8
x=1+12×|1_+14×|2_+18×|3_
  • e1/2
  • e2
  • e
  • 1e
Find the (2n)th term of the series whose nth term is n2+1n3:
  • n2+18n3
  • 4n2+18n3
  • 4n2+1n3
  • 2n2+12n3
In the series 1+3+6+10+......, find the nth term:
  • n(n1)2
  • n(n+1)2
  • n(2n1)2
  • n(2n+1)2
Consider an incomplete pyramid of balls on a square base having 18 layers; and having 13 balls on each side of the top layer. Then the total number N of balls in that pyramid satisfies
  • 9000<N<10000
  • 8000<N<9000
  • 7000<N<8000
  • 10000<N<12000
With the help of match-sticks, Zalak prepared a pattern as shown below. When 97 matchsticks are used, the serial number of the figure will be ...........
626028_e327aecd938b484db21d45ffb46b1a27.PNG
  • Figure 32
  • Figure 95
  • Figure 49
  • Figure 48
Three bells commenced to toll at the same time and tolled at intervals of 20,30,40 seconds respectively. If they toll together at 6 am, then which of the following is the time at which they can toll together
  • 6:55am
  • 6:56am
  • 6:57am
  • 6:59am
Let an=4n+4n212n+1+2n1 then 144n=1an equals
  • 2456
  • 2645
  • 2466
  • 2546
If 112+122+132+..... upto =π26, then 112+132+152+....=
  • π212
  • π224
  • π28
  • π24
k=16k(32k+1+22k+1)(3k2k+1+2k3k+1) is equal to
  • 3
  • 13
  • 43
  • 65
Let S=99n=1=51005100+25n then find the value of [S], where [.]=G.I.F.
  • 99
  • 100
  • 25
  • 49
The first term of an AP is 148 and the common difference is 2. If the AM of first n terms of the AP is 125, then the value of n is
  • 18
  • 24
  • 30
  • 36
  • 48
The sum of the series 17n=81(n+2)(n+3) is equal to
  • 117
  • 118
  • 119
  • 120
  • 121
The value of 1i+1i2+1i3+....+1i102 is
  • 1i
  • 1+i
  • 1i
  • 1+i
  • 12i
The sum of the first n terms of the series 12+222+33+242+52+262+ is n(n+1)22 when n is even, when n is odd the sum is
  • 3n(n+1)2
  • n2(n+1)2
  • n(n+1)24
  • [n(n+1)2]2
Find the sum of the series 
123+145+167+...
  • loge2
  • loge4
  • log23
  • log24
If the natural numbers are divided into groups of {1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10} ....Then the /sum of 50th group is 
693570_f1a93ed930d240ae89ce071c94c93b40.PNG
  • 65225
  • 56225
  • 62525
  • 53625
The value of a for which side of nth square equals the diagonals of (n+1)th square is 
  • 1/3
  • 1/4
  • 1/2
  • 12
If nr=1tn=n(n+1)(n+2)(n+3)8, then nr=11t1 equals
  • (1(n+1)(n+2)12)
  • (1(n+1)(n+2)12)
  • (1(n+1)(n+2)+12)
  • (1(n1)(n2)+12)
Let rth term of a series is given by, Tr=r13r2+r4.
Then limnnr=1Tr is 
  • 32
  • 12
  • 12
  • 32
If α=1/4 and Pn denotes the perimeter of the nth square thenn=1Pn equals 
  • 83(4+10)
  • 83
  • 163
  • None of these
If a1R{0},i=1,2,3,4 and xR and (3i=1a2i)x22x(3i=1aiai+1)+4i=2a2i0, then a1,a2,a3,a4 are in
  • A.P
  • G.P
  • H.P
  • A.G.P
If bi=1ai,na=ni=1ai,nb=ni=1bi, then ni=1aibi+ni=1(aia)2=
  • ab
  • nab
  • nab
  • (n+1)ab
4,9,25,?,121,169
  • 36
  • 49
  • 64
  • 81
Let S be the infinite sum given by S=n=0an102n, where (an)n0 is a sequence defined by a0=a1=1 and aj=20aj1 for j2. If S is expressed in the form ab, where a,b are coprime positive integers, than a equals.
  • 60
  • 75
  • 80
  • 81
Find the missing number in the circle:
716190_432c83cc262449fb9c49be0336e200ad.jpg
  • 66
  • 72
  • 71
  • 78
nr=0(2r2.nCr(r+1)(r+2)) is equal to
  • 3n+22n+5(n+1)(n+2)
  • 3n+24n+5(n+1)(n+2)
  • 3n+22n5(n+1)(n+2)
  • None of these
13, 74, 290, 650,.......
  • 1248
  • 1370
  • 1346
  • 1452
  • 1625
Figures 1 and 2 are related in a particular manner. Establish the same relationship between figures 3 and 4 by choosing a figure from amongst the options.
726593_93a844c1ede949b2b2fa594a3d0af569.png
Select the INCORRECT match
  • 3249MMMCCXLIX
  • 1667MDCLXVII
  • 207CCXVII
  • 499CDXCIX
The value of n=1(1)n+1(n5n) equals
  • 512
  • 524
  • 536
  • 516
If the pth term of the series of positive numbers 25,2235,2012,1814, .... is numerically the smallest, then the pth is.
  • 14
  • 17
  • 13
  • 15
The sum of first 20 terms of the series 1,6,13,22- is
  • 5580
  • 5780
  • 7789
  • 1237
If |x|<1  then the coefficient of x5 in the expansion of 3x(x2)(x1) is
  • 3332
  • 3332
  • 3132
  • 3334
2.4+4.7+6.10+..... upto (n1) terms 
  • 2n3+2n2
  • 16(n3+3n2+1)
  • 2n32n2
  • 16(n23n+1)
Sum of the series nr=1(r2+1)r! is ______
  • (n+1)!
  • (n+2)!1
  • n(n+1)!
  • none of these
Given Sn=1+q+q2+...+qn & Sn=1+q+12+(q+12)2+....+(q+12)n,q1. then n+1C1+n+1C2s1+n+1C3s2+....+n+1Cn+1sn=2nSn.
  • True
  • False
Suppose a2,a3,a4,a5,a6,a7 are integers such that
57=a22!+a33!+a44+a55!+a66!+a77!
where 0a<j for j=2,4,5,6,7. The sum a2+a3+a4+a5+a6+a7 is 
  • 8
  • 9
  • 10
  • 11
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers