Explanation
1=1, here n=1⇒1(1+1)2=1 1+2=3, here n=2⇒2(2+1)2=3
1+2+3=6, here n=3⇒3(3+1)2=6
1+2+3+4=10, here n=4⇒4(4+1)2=10
nth term is sum of n terms
Therefore, Tn=n(n+1)2
The top layer has (13×13) balls the layer below it will have (14×14) balls
We have 18 layers
So the total number of balls
N=(13×13)+(14×14)+.......(30×30)N=132+142+.....302
Sum of squares of first n natural numbers is n(n+1)(2n+1)6
∴N= sum of first 30 − sum of first 12
N=30×31×616−12×13×256N=8805
⇒8000<N<9000
n∑r=1(r2+1)r!
⇒n∑r=1(r2+1+2r−2r)r!
⇒n∑r=1((r+1)2.r!−2r.r!)
⇒n∑r=1((r+1).(r+1)!−2r.r!)
⇒n∑r=1[(r+2−1)(r+1)!−2((r+1−1)r!)]
⇒n∑r=1[(r+2)(r+1)!−(r+1)!−2((r+1)r!−r!)]
⇒n∑r=1[(r+2)!−(r+1)!−2.(r+1)!+2.r!)]
T1=3!−2!−2.2!+2.1!
T2=4!−3!−2.3!+2.2!
T3=5!−4!−2.4!+2.3!
.
Tn=(n+2)!−(n+1)!−2.(n+1)!+2.n!
−−−−−−−−−−−−−−−−−−−
Sum=Sn=(n+2)!−2!−2(n+1)!+2.1!
Sn=(n+2)!−2(n+1)!−2+2
Sn=(n+1)![n+2−2]
Sn=n.(n+1)!
Correct answer is C
57=a22!+a33!+a44!+a55!+a66!+a77!⇒57=12(a2+13(a3+14(a4+......(a77))))107=a2+13(a3+14(a4+......(a77)))1+37=a2+13(a3+14(a4+......(a77)))
So, as expression is less than 1
a2=137=13(a3+14(a4+......15(a5+.....a77)))1+27=a3+14(a4+......15(a5+16(a6+a77)))a3=1
Similarly
a4=1a7=2a5=0a6=4
So, Sum a7−1+1+1+4+2=9
Please disable the adBlock and continue. Thank you.