Explanation
Distance between two points = \sqrt { \left( { x }_{ 2 }-{x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Distance between the points A (3,1) and B (-3,2) = \sqrt { \left( -3-3 \right) ^{ 2 }+\left( 2 - 1 \right) ^{ 2 } } = \sqrt { 36 + 1 } = \sqrt { 37 }
Distance between the points B(-3,2) and C (0,2-\sqrt {3}) = \sqrt { \left( 0 + 3 \right) ^{ 2 }+\left(2 - \sqrt {3} - 2\right) ^{ 2 } } = \sqrt { 9 + 3 } = \sqrt { 12 }
Distance between the points A(3,1) and C(0,2-\sqrt {3})
= \sqrt { \left( 0-3\right) ^{ 2 }+\left( 2-\sqrt {3} - 1\right) ^{ 2 } } = \sqrt { 9 + 1 + 3 -2\sqrt {3} } = \sqrt { 13 - 2\sqrt {3} }
Since the length of the sides between all vertices are different, they are the vertices of a scalene triangle.
Area of a triangle = \left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 } \right| Area of \triangle ABC= \left| \cfrac { (3)(2-2+\sqrt {3})+(-3)(2-\sqrt {3} - 1)+0(1-2) }{ 2 } \right|
= \left| \cfrac { 3\sqrt {3} -3 + 3\sqrt {3} }{ 2 } \right|
= \cfrac{-3 + 6 \sqrt {3}}{2} sq. units
Let the point on the x-axis be (x,0) .Distance between (x,0) and (7,6) = \sqrt { \left( 7-x \right) ^{ 2}+\left( 6 - 0 \right) ^{ 2 } } = \sqrt { { 7}^{ 2 }+ { x }^{ 2 } - 14x + 36 }= \sqrt { { x }^{ 2 } - 14x + 85 } Distance between (x,0) and (-3,4) = \sqrt { \left( -3-x \right) ^{ 2}+\left( 4 - 0 \right) ^{ 2 } } = \sqrt { 9 + { x }^{ 2 } + 6x + 16 } =\sqrt { { x }^{ 2 } + 6x + 25 } As the point (x,0) is equidistant from the two points, both the distances calculated are equal. \sqrt { { x }^{ 2 } - 14x + 85 } = \sqrt { { x }^{ 2 } + 6x + 25} \Rightarrow { x }^{ 2 } - 14x + 85 = { x }^{ 2 } + 6x + 25 \Rightarrow 85 - 25 = 6x + 14x \Rightarrow 60 = 20x
\Rightarrow x = 3 Thus, the point is (3,0) .
or, {PA}^{2} = {PB}^{2} => {(x-3)}^{2} + {(y-4)}^{2} = {(x-5)}^{2} + {(y+2)}^{2} {x} ^{2} -6x + 9 + {y} ^{2} -8y + 16 = {x}^{2} -10x + 25 + {y}^{2} + 4y + 4 4x - 12y = 4 x - 3y = 1 .......(i)Also Area of PAB=10 | \dfrac {(x (4+2)+3(-2-y)+5(y-4)}{ 2 } =10 \left| \dfrac { 6x -6-2y +5y -20 }{ 2 } \right| = 10 \dfrac {6x+3y -26}{2} = \pm 10 $$ 6x+2y26=\pm 20 $$$$ 6x+2y =46 ........(ii) or 6x + 2y = 6 .......(iii) Solving\ equation\ (i)\ and\ (ii) x = 7, y = 2 $$ and solving equation (i) and (iii) x = 1, y = 0
So, the co-ordinates of P are (7, 2) or (1, 0)
=> \sqrt { \left( -3-x \right) ^{ 2 }+\left( 0 - y \right) ^{ 2 } } = 4
But x = 0 => \sqrt { 9 + { y }^{ 2 } } = 4 => 9 + {y}^{2} = 16
{y}^{2} = 7
=> y = \sqrt {7} or - \sqrt {7}
Using the section formula, if a point (x,y) divides theline joining the points ({ x }_{ 1 },{ y }_{ 1 }) and ({ x }_{ 2 },{ y }_{ 2 })externally in the ratio m:n , then (x,y) = \left( \dfrac { m{ x }_{ 2 }-n{ x }_{ 1 } }{ m-n } ,\dfrac { m{ y }_{ 2 }-n{ y }_{ 1 } }{ m-n } \right) Since, AC = 2BC => \dfrac { AC }{ BC } =\dfrac { 2 }{ 1 } Substituting ({ x }_{ 1 },{ y }_{ 1 }) = (-3,4) and ({x }_{ 2 },{ y }_{ 2 }) = (2,1) and m = 2, n = 1 in the section formula, we get C = \left( \dfrac { 2(2)-1(-3) }{ 2-1 } ,\dfrac { 2(1)-1(4) }{ 2-1 } \right) =\left( 7,-2 \right)
Distance between the points (0,3) and (5,0) = \sqrt { \left( 5-0\right) ^{ 2 }+\left( 0-3\right) ^{ 2 } } = \sqrt { 25 + 9 } = \sqrt { 34 }
Let the point on the x-axis be (x,0) Distance between (x,0) and (5,4) = \sqrt { \left( 5-x \right) ^{ 2}+\left( 4 - 0 \right) ^{ 2 } } = \sqrt { { 5}^{ 2 }+ { x }^{ 2 } - 10x + 16 }= \sqrt { { x }^{ 2 } - 10x + 41 } Distance between (x,0) and (-2,3) = \sqrt { \left( -2-x \right) ^{ 2}+\left( 3 - 0 \right) ^{ 2 } } = \sqrt { { 2}^{ 2 }+ { x }^{ 2 } + 4x + 9 } =\sqrt { { x }^{ 2 } + 4x + 13 }
As the point (x,0) is equidistant from the two points, both the distances calculated are equal.
\sqrt { { x }^{ 2 } - 10x + 41 } = \sqrt { { x }^{ 2 } + 4x + 13 }
=> { x }^{ 2 } - 10x + 41 = { x }^{ 2 } + 4x + 13
41 - 13 = 10x + 4x
28 = 14x x = 2 . Thus, the point is (2,0) .
Using this formula, mid point of AB = D = \left( \dfrac { 2-4 }{ 2 } ,\dfrac { 2-4 }{ 2 } \right) \quad =\quad (-1,-1)
Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Distance between the points C (5,-8) and D (-1,-1) = \sqrt { \left( -1-5 \right) ^{ 2 }+\left( -1 +8 \right) ^{ 2 } } = \sqrt { 36 + 49} = \sqrt {85 }
Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculatedusing the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Distance between the points (x+y,x-y) and (x-y,x+y) = \sqrt { \left(x-y-x-y\right) ^{ 2 }+\left( x+y-x+y \right) ^{ 2 } } = \sqrt { { (2y) }^{ 2 }+{ (2y) }^{ 2 } } = 2\sqrt {2} y
Since, AD = 3AB => \dfrac { AD }{ BD} =\dfrac { 3 }{2 }
Using the section formula, if a point (x,y) divides theline joining the points ({ x }_{ 1 },{ y }_{ 1 }) and ({ x }_{ 2 },{ y }_{ 2 })externally in the ratio m:n , then (x,y) = \left( \dfrac { m{ x }_{ 2 }-n{ x }_{ 1 } }{ m-n } ,\dfrac { m{ y }_{ 2 }-n{ y }_{ 1 } }{ m-n } \right) Substituting ({ x }_{ 1 },{ y }_{ 1 }) = (1,1) and ({x }_{ 2 },{ y }_{ 2 }) = (2,-3) and m = 3, n = 2 in the section formula, we get C = \left( \dfrac { 3(2)-2(1) }{ 3-2 } ,\dfrac { 3(-3)-2(1) }{ 3-2 } \right) =\left( 4,-11 \right)
Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using theformula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Distance between the points (3,a) and (4,1) = \sqrt {10}
=> \sqrt { \left( 4-3 \right) ^{ 2 }+\left( 1 - a \right) ^{ 2 } } = \sqrt {10}
\sqrt { 1 + { (1 - a) }^{ 2 } } = \sqrt {10}
1 + { (1 - a) }^{ 2 } = 10
{ (1-a) }^{ 2 } = 9
1-a = 3 or - 3
=> a = -2 or 4
Let A (2,5), B (3,-4) and C (7,10) Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y}_{ 1 } \right) ^{ 2 } }
Distance between the points A and B AB = \sqrt { \left( 3+2 \right) ^{ 2 }+\left( -4-5\right) ^{ 2 } } = \sqrt { 25 + 81 } = \sqrt { 106 }
Distance between the points B and C BC = \sqrt { \left(7-3 \right) ^{ 2 }+\left( 10+4\right) ^{ 2 } } = \sqrt { 16 + 196 } = \sqrt { 212 }
Distance between the points A and C AC = \sqrt { \left(7+2 \right) ^{ 2 }+\left(10-5\right) ^{ 2 } } = \sqrt { 81 + 25 } = \sqrt { 106 }
Since, {(\sqrt { 212}) }^{2} = {(\sqrt { 106 }) }^{2} + {(\sqrt { 106 })}^{2} , the triangle is a right angled triangle.
Distancebetween two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Distance between (a,2) and (3,4) = 8 \sqrt { \left( 3-a \right) ^{ 2 }+\left( 4-2 \right) ^{ 2 } } = 8 \sqrt { 9 + { a }^{ 2 } - 6a + 4 } = 8 \sqrt { { a }^{ 2 } - 6a + 13 } = 8 { a }^{ 2 }- 6a + 13 = 64 { a }^{ 2 } - 6a - 51 = 0
a= \dfrac { -(-6)\pm \sqrt { \left( { -6 }^{ 2 } \right) -4(1)(-51) } }{ 2(1) }
Consider given, distance between the points (3,k) and (4,1) is \sqrt{10}.
Now,
\sqrt{{{\left( 3-4 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{10}
{{\left( -1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=10
{{\left( k-1 \right)}^{2}}=9
k-1=\pm 3
If,
k-1=-3
k=-2
if,
k-1=+3
k=4
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.