Processing math: 4%

CBSE Questions for Class 11 Engineering Maths Straight Lines Quiz 5 - MCQExams.com

If M(x,y) is equidistant from A(a+b,ba) and B(ab,a+b), then 
  • bx+ay=0
  • bxay=0
  • ax+by=0
  • axby=0
(3, 1), (-3, 2) and \displaystyle (0,2-\sqrt{3}) are the vertices of __________ triangle of area ___________.
  • an isosceles, 81 sq. units
  • a scalene, \cfrac {-3+6\sqrt{3}}{2} sq. units
  • an equilateral, \displaystyle 9\sqrt{3} sq. units
  • a right angled, 81 sq. units
The angle between the lines y -x + 5 = 0 and \sqrt 3x - y + 7= 0 is/are
  • 15^o
  • 60^o
  • 165^o
  • 75^o
The points A(a, b + c), B(b, c + a) and C(c, a + b) are:
  • collinear
  • doesn't lie in the same plane
  • doesn't lie on the same line
  • nothing can be said
Find the area of the triangle whose vertices are (a, b + c), (a, b - c) and (-a, c).
  • 2ac
  • 2bc
  • b(a + c)
  • c (a - b)
The  triangle with vertices A(4, 4), B(-2, -6) and C(4, -1) is shown in the diagram. The area of \Delta ABC is _______
315256_5a2397c27ccb4a7381cb4eb9f6626fa4.png
  • 5 sq. units
  • 12 sq. units
  • 15 sq. units
  • 20 sq. units
\triangle OAB is an equilateral triangle where \displaystyle O\equiv \left( 0,0 \right) ,A\equiv \left( 1,\frac { 1 }{ \sqrt {3}}\right) . The co-ordinates of point B can be :-
  • \displaystyle \left( \frac { 2 }{ \sqrt { 3 } } ,0 \right)
  • \displaystyle \left( 0,-\frac { 1 }{ \sqrt { 3 } } \right)
  • \displaystyle \left( 0,\frac { 1 }{ \sqrt { 3 } } \right)
  • \displaystyle \left( 1,-\frac { 1 }{ \sqrt { 3 } } \right)
Supriya is standing in the Sun close to a lamp post. Supriya is 5 feet  tall and her shadow is 2 feet long. The shadow of the lamp post is  8 feet long. How tall is the lamp post ?
315415.png
  • 25ft
  • 18ft
  • 16ft
  • 14ft
Three points A, B and C have coordinates (a, b + c), \ (b, c + a) and (c, a + b), respectively. The area of the triangle ABC will be:
  • \displaystyle a^{2}+b^{2}+c^{2}
  • \displaystyle \dfrac{a^{2}+b^{2}+c^{2}}2
  • \displaystyle \dfrac{a^{2}+b^{2}+c^{2}}4
  • 0
A special fully automatic car is designed by the Indian scientist in the Hindustan Automobiles Ltd The car follows only the following instructions
 \displaystyle G_{1}(x) : The car shall move forward to x meters
\displaystyle G_{2}(x) : The car shall turn in right direction and move x meters
\displaystyle G_{3}(x) : The car shall turn in left direction and move x meters
\displaystyle G_{4}(x) : The car shall move left y meetrs

The car is given instruction \displaystyle G_{1}(100), \displaystyle G_{3}(50), \displaystyle G_{4}(10). Assume that car was initially at origin Find the shortest distance of the car from the original position
  • \displaystyle 10\sqrt{105}
  • \displaystyle 10\sqrt{106}
  • \displaystyle 8\sqrt{106}
  • \displaystyle 5\sqrt{106}
If the coordinates of two points A and B are (3, 4) and (5, -2), respectively, then the coordinates of any point P if PA = PB and area of \displaystyle \Delta PAB=10 is
  • (7, 2) or (1, 0)
  • (-7, 2) or (3, 0)
  • (7, -2) or (5, 0)
  • (7, -2) or (-1, 0)
If the slope of a line passing through the point A(3, 2) be \displaystyle  \frac{3}{4} then the points on the line which are 5 units away from A are
  • (5, 5), (-1, -1)
  • (7, 5), (-1, -1)
  • (5, 7), (-1, -1)
  • (7, 5), (1, 1)
Find a point on the x-axis which is equidistant from the points (7, 6) and (-3, 4)
  • (3, 0)
  • (2, 0)
  • (-3, 0)
  • (4, 0)
If the co-ordinates of two points A and B are (3, 4) and (5, -2) respectively then the co-ordinates of any point P if PA = PB and area of \displaystyle \Delta PAB=10 is
  • (7, 2) or (1, 0)
  • (-7, 2) or (3, 0)
  • (7, -2) or (5, 0)
  • (7, -2) or (-1, 0)
Find the point P(x, y) if its distance from (-3, 0) & (3, 0) is 4 units individually
  • \displaystyle \left ( 0,\sqrt{5} \right )
  • \displaystyle \left ( 0,-\sqrt{5} \right )
  • \displaystyle \left ( 0,-\sqrt{7} \right )
  • (1, 0)
If A & B are the points (-3, 4) and (2, 1), then the coordinates of the point C on produced AB such that AC = 2BC are
  • (2, 4)
  • (3, 7)
  • (7, -2)
  • \displaystyle \left ( \frac{1}{2},\frac{5}{2} \right )
AOBC is a rectangle whose three vertices are A (0, 3) O (O, 0) and B (5, 0). The length of its diagonal is 
  • 5
  • 3
  • 4
  • \displaystyle \sqrt{34}
The coordinates of A for which area of triangle, whose vertices are A(a, 2a),\  B(-2, 6) and C(3, 1) is 10 square units, are:
322219_bbb0d51619394b8eb9978b7422686677.png
  • (0,\:3)
  • (5,\:8)
  • (\displaystyle 3, \frac{8}{3})
  • None of these
Find a point on the X-axis which is equidistant from the points (5, 4) and (-2, 3).
  • (2,0)
  • (0,2)
  • (-2,0)
  • (0-2)
If A(2, 2), B(-4, -4), C(5, -8) are the vertices of any triangle the length of median passes through C will be
  • \displaystyle \sqrt{65}
  • \displaystyle \sqrt{117}
  • \displaystyle \sqrt{85}
  • \displaystyle \sqrt{113}
If the area of a triangle formed by the points (k, 2k) (-2, 6) and (3, 1) is 20 square units. Find the value of k.
  • 5
  • 4
  • \displaystyle \frac{3}{5}
  • \displaystyle \frac{2}{3}
The distance between (x+y, x-y), (x-y, x+y) is 
  • 0
  • \sqrt2 xy
  • 2\sqrt 2y
  • 2 xy
A(1, 1) and B(2, -3) are two points and D is a point on AB produced such that AD = 3 AB Then the co-ordinates of D is
  • (4, 11)
  • (4, -11)
  • (-2, 5)
  • (-4, -11)
In the diagram PQR is an isosceles triangle and QR = 5 units
The coordinates of Q are
327708.bmp
  • (1, 5)
  • (3, 4)
  • (2, 4)
  • (1, 4)
Value of a when the distance between the points (3, a) and (4, 1) is \displaystyle \sqrt{10} is
  • 4\ or -2
  • -2\ or\ 4
  • 6\ or\ 2
  • None
Do the points (-2, 5), (3, -4) and (7, 10) represent  the vertices of a right triangle?
  • Yes
  • No
  • Cannot be determined
  • None
If the distance between the points (a, 2) and (3, 4) be 8 then a =
  • \displaystyle 2+3\sqrt{15}
  • \displaystyle 2-3\sqrt{15}
  • \displaystyle 2\pm 3\sqrt{15}
  • \displaystyle 3\pm 2\sqrt{15}
If the area of a triangle is 68 sq. units and the vertices are (6, 7), (-4, 1) and (a, -9) then the value of a is 
  • 1
  • 2
  • 3
  • 4
The value of k when the distance between the points (3,k) and (4,1) is  \displaystyle  \sqrt{10}   is 
  • 3 or 4
  • -4 or -2
  • -4 or 2
  • 4 o r-2
If P is (-3, 4) and My Mx (P) shows the reflection ofthe point P in the x-axis and then the reflection of the image in the y-axis, then M_y M_x (P) is
  • (3,4)
  • (-3,-4)
  • (-3,4)
  • (3,-4)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers