Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 4 - MCQExams.com

Given sinA=35 and  tanA is 3m, then m is: 
  • 1
  • 2
  • 4
  • 3
Find the smallest positive number p for which the equation cos(psinx)=sin(pcosx) has a solution xε[0,2π]
  • 2π/4
  • 2π/2
  • 2π
  • π/6
Number of solutions of the equation tanx+secx=2cosx lying in the interval [0,2π] is
  • 0
  • 1
  • 2
  • 3
The value of sin215+sin230+sin245+sin260+sin275 is
  • 1
  • 32
  • 52
  • 3
Given that tan(A+B)=tanA+tanB1tanAtanB where A and B are acute angle.
Calculate A+B when tanA=12,tanB=13.
  • A+B=30
  • A+B=45
  • A+B=60
  • A+B=75
If A=60 and B=30, then verify each of the following:
(i) cos(AB)=cosAcosB+sinAsinB
(ii)cot(A+B)=cotAcotB1cotA+cotB
  • (i) True
    (ii) False
  • (i) False
    (ii) False
  • (i) True
    (ii) True
  • (i) False
    (ii) True
Is LHS=RHS?

cosecθ1cosecθ+1+cosecθ+1cosecθ1=2cosθ

Say true or false?
  • True
  • False
  • Ambiguous
  • Data insufficient
Evaluate : 2tan301tan230
  • 0
  • 1
  • 2
  • 3
Is LHS=RHS?
cosθ1+sinθ+cosθ1sinθ=2cosecθ
Say true or false.
  • Yes
  • No
  • Ambiguous
  • Data insufficient
If α+β=90 and α=2β, then cos2α+sin2β equal
  • 1
  • 0
  • 12
  • 2
If psinx=q. If x is acute, then p2q2tanx is equal to 
  • p
  • q
  • pq
  • p+q
|tanx|=tanx+1cosx(0×2π) has 
  • no solution
  • one solution
  • two solutions
  • three solutions
If 8tanA=15, then the value of sinAcosAsinA+cosA is:
  • 723
  • 1123
  • 1323
  • 1723
The number of solutions of the equation secx1cosx=11cosx in [0,2π] is equal to
  • 3
  • 2
  • 1
  • 0
If x=2sin2θ, y=2cos2θ+1, then the value of x+y is:
  • 2
  • 3
  • 12
  • 1
The solution set of (5+4cosθ)(2cosθ+1)=0 in the interval [0,2π] is
  • {π3,2π3}
  • {π3,π}
  • {2π3,4π3}
  • {2π3,5π3}
Which of the following is / are the value (S) of the expression?
sin A(1+ tan A) + cos A (1+ cot A) ?
1. sec A + cosec A
2. 2 cosec A ( sin A + cos A )
3. tan A + cot A 
Select the correct answer using the code given below. 
  • 1 only
  • 1 and 2 only
  • 2 only
  • 1 and 3 only
If sinx+sin2x=1 then the value of cos2x+cos4x is equal to
  • 1
  • 12
  • 133
  • 3552
If cosθ=513, where θ being an acute angle, then the value of cosθ+5cotθcosec θcosθ will be 
  • 169109
  • 155109
  • 385109
  • 95109
Without using trigonometric tables evaluate:-

cos220+cos270sec250cot240+2cosec2582cot58tan324tan13tan37tan45tan53tan77 
  • 1
  • 2
  • -1
  • -2
tan2θ1+secθ+1 equals to
  • tanθ
  • 1cosθ
  • secθ1
  • secθ+tanθ
1sinθ1+sinθ is equal to ............
  • cosec θcotθ
  • tanθsecθ
  • secθtanθ
  • cotθcosec θ
The value of (1+tan2θ)(1+cot2θ) is
  • tan2θ
  • cot2θ
  • sec2θ
  • cosec 2θ
The ABC has a right angle at C. If sinA=23 then tanB is
  • 35
  • 53
  • 25
  • 52
The simplification of 1+cosA1cosA gives
  • cosec A+cotA
  • cosec AcotA
  • 1+cosAsinA
  • Both A and C.
The expression (1tanA+secA)(1cotA+cossecA) has value 
  • -1
  • 0
  • +1
  • +2
In a right angled ΔABC right angled at B the ratio of AB to AC is 1:5 then 3tanθ+5sec2θ is
  • 25
  • 3+5
  • 254+32
  • 5+12
The value of sin253+cos253sec237tan237 is
  • 1
  • 2
  • 14
  • 32
Value of (1+tanθ+secθ)(1+cotθcosecθ) is:
  • 1
  • 1
  • 2
  • 4
If secθ=2, evaluating 1tanθ1+tanθ gives
  • 3
  • 3+1
  • 23
  • 3+12
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers