Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 4 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 4
Given
sin
A
=
3
5
and
tan
A
is
3
m
, then
m
is:
Report Question
0%
1
0%
2
0%
4
0%
3
Explanation
Given
sin
A
=
3
5
sin
A
=
P
B
=
3
5
Thus,
P
=
3
,
H
=
5
By Pythagoras Theorem,
H
2
=
P
2
+
B
2
5
2
=
3
2
+
B
2
B
=
4
cm
Now,
tan
A
=
P
B
=
3
4
Find the smallest positive number p for which the equation
c
o
s
(
p
s
i
n
x
)
=
s
i
n
(
p
c
o
s
x
)
has a solution
x
ε
[
0
,
2
π
]
Report Question
0%
√
2
π
/
4
0%
√
2
π
/
2
0%
√
2
π
0%
π
/
6
Explanation
cos
(
p
sin
x
)
=
sin
(
p
cos
x
)
⇒
cos
(
p
sin
x
)
=
cos
(
π
2
−
p
cos
x
)
⇒
p
sin
x
=
2
n
π
±
(
π
2
−
p
cos
x
)
⇒
p
sin
x
+
p
cos
x
=
2
n
π
+
π
2
or
p
sin
x
−
p
cos
x
=
2
n
π
−
π
2
⇒
p
√
2
(
sin
(
x
+
π
4
)
)
=
(
4
n
+
1
)
π
2
Or
p
√
2
(
sin
(
x
−
π
4
)
)
=
(
4
n
−
1
)
π
2
As
−
1
≤
sin
(
x
+
π
4
)
≤
1
⇒
−
p
√
2
≤
p
√
2
sin
(
x
+
π
4
)
≤
p
√
2
⇒
−
p
√
2
≤
(
4
n
+
1
)
π
2
≤
p
√
2
...(1)
And as
−
1
≤
sin
(
x
−
π
4
)
≤
1
⇒
−
p
√
2
≤
p
√
2
sin
(
x
−
π
4
)
≤
p
√
2
⇒
−
p
√
2
≤
(
4
n
−
1
)
π
2
≤
p
√
2
...(2)
(2) is always a subset of of first, therefore we have to consider only first
It is sufficient to consider
n
≥
0
, because for
n
>
0
, the solution will be same for
n
≥
0
If
n
≥
0
−
√
2
p
≤
(
4
n
+
1
)
π
2
⇒
(
4
n
+
1
)
π
2
≤
√
2
p
√
2
p
≥
π
2
⇒
p
≥
π
2
√
2
=
π
√
2
4
Number of solutions of the equation
t
a
n
x
+
s
e
c
x
=
2
c
o
s
x
lying in the interval
[
0
,
2
π
]
is
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
t
a
n
x
+
s
e
c
x
=
2
c
o
s
x
⇒
s
i
n
x
+
1
=
2
c
o
s
2
x
⇒
s
i
n
x
+
1
=
2
−
2
s
i
n
2
x
⇒
2
s
i
n
2
x
+
s
i
n
x
−
1
=
0
⇒
(
2
s
i
n
x
−
1
)
(
s
i
n
x
+
1
)
=
0
but
s
i
n
x
=
−
1
⇒
x
=
3
π
2
...........(1)
s
i
n
x
=
1
2
=
s
i
n
π
6
therefore general solution is,
x
=
n
π
+
(
−
1
)
n
.
π
6
x
=
.
.
.
.
.
.
,
π
6
,
5
π
6
,
.
.
.
.
.
.
..........(2)
Therefore, number of solutions in the given interval are
3
.
Hence, option 'D' is correct.
The value of
sin
2
15
∘
+
sin
2
30
∘
+
sin
2
45
∘
+
sin
2
60
∘
+
sin
2
75
∘
is
Report Question
0%
1
0%
3
2
0%
5
2
0%
3
Explanation
(
sin
2
75
0
+
sin
2
(
15
0
)
)
+
(
sin
2
30
0
+
sin
2
60
0
)
+
sin
2
45
0
=
(
cos
2
15
0
+
sin
2
15
0
)
+
(
cos
2
60
0
+
sin
2
60
0
)
+
1
2
=
1
+
1
+
1
2
=
2
+
1
2
=
5
2
Given that
tan
(
A
+
B
)
=
tan
A
+
tan
B
1
−
tan
A
tan
B
where
A
and
B
are acute angle.
Calculate
A
+
B
when
tan
A
=
1
2
,
tan
B
=
1
3
.
Report Question
0%
A
+
B
=
30
∘
0%
A
+
B
=
45
∘
0%
A
+
B
=
60
∘
0%
A
+
B
=
75
∘
Explanation
Given that
tan
A
=
1
/
2
,
tan
B
=
1
/
3
tan
(
A
+
B
)
=
tan
A
+
tan
B
1
−
tan
A
tan
B
=
1
2
+
1
3
1
−
(
1
2
)
(
1
3
)
=
5
6
×
6
5
=
1
∴
tan
(
A
+
B
)
=
1
=
tan
45
∘
⇒
A
+
B
=
45
∘
If
A
=
60
∘
a
n
d
B
=
30
∘
, then verify each of the following:
(
i
)
cos
(
A
−
B
)
=
cos
A
cos
B
+
sin
A
sin
B
(
i
i
)
cot
(
A
+
B
)
=
cot
A
cot
B
−
1
cot
A
+
cot
B
Report Question
0%
(
i
)
T
r
u
e
(
i
i
)
F
a
l
s
e
0%
(
i
)
F
a
l
s
e
(
i
i
)
F
a
l
s
e
0%
(
i
)
T
r
u
e
(
i
i
)
T
r
u
e
0%
(
i
)
F
a
l
s
e
(
i
i
)
T
r
u
e
Explanation
=
c
o
s
(
60
0
−
30
0
)
=
c
o
s
(
30
0
)
=
√
3
2
=
L
H
S
Now
R
H
S
=
c
o
s
60
0
c
o
s
30
0
+
s
i
n
30
0
s
i
n
60
0
=
√
3
4
+
√
3
4
=
√
3
2
=
R
H
S
Hence verified.
=
c
o
t
(
60
0
+
30
0
)
=
c
o
t
(
90
0
)
=
0
=
L
H
S
RHS
=
c
o
t
60
0
.
c
o
t
30
0
−
1
c
o
t
60
0
+
c
o
t
30
0
=
1
−
1
1
√
3
+
√
3
=
0
H
e
n
c
e
v
e
r
i
f
i
e
d
.
Is LHS=RHS?
√
c
o
s
e
c
θ
−
1
c
o
s
e
c
θ
+
1
+
√
c
o
s
e
c
θ
+
1
c
o
s
e
c
θ
−
1
=
2
cos
θ
Say true or false?
Report Question
0%
True
0%
False
0%
Ambiguous
0%
Data insufficient
Explanation
Simplifying the given expression, we get
c
o
s
e
c
θ
−
1
+
c
o
s
e
c
θ
+
1
√
c
o
s
e
c
2
θ
−
1
=
2
c
o
s
e
c
θ
c
o
t
θ
=
2
c
o
s
e
c
θ
c
o
s
θ
.
c
o
s
e
c
θ
=
2
c
o
s
θ
=
2
s
e
c
θ
Evaluate :
2
tan
30
∘
1
−
tan
2
30
∘
Report Question
0%
0
0%
1
0%
√
2
0%
√
3
Explanation
We know that
tan
2
A
=
2
tan
A
1
−
tan
2
A
Here
A
=
30
0
Substituting, we get
2
tan
30
0
1
−
tan
2
30
0
=
tan
(
2
(
30
0
)
)
=
tan
(
60
0
)
=
√
3
Is LHS=RHS?
cos
θ
1
+
sin
θ
+
cos
θ
1
−
sin
θ
=
2
c
o
s
e
c
θ
Say true or false.
Report Question
0%
Yes
0%
No
0%
Ambiguous
0%
Data insufficient
Explanation
c
o
s
(
θ
)
(
1
−
s
i
n
θ
+
1
+
s
i
n
θ
)
1
−
s
i
n
2
θ
=
c
o
s
(
θ
)
(
2
)
c
o
s
2
θ
=
2
c
o
s
θ
=
2
s
e
c
θ
If
α
+
β
=
90
∘
and
α
=
2
β
, then
cos
2
α
+
sin
2
β
equal
Report Question
0%
1
0%
0
0%
1
2
0%
2
Explanation
It is given that
α
=
2
β
Hence
α
+
β
=
90
0
Substituting, we get
3
β
=
90
0
Hence
β
=
30
0
Therefore
α
=
60
0
Hence
sin
2
β
+
cos
2
α
=
1
2
2
+
1
2
2
=
1
4
+
1
4
=
1
2
If
p
sin
x
=
q
. If
x
is acute, then
√
p
2
−
q
2
t
a
n
x
is equal to
Report Question
0%
p
0%
q
0%
p
q
0%
p
+
q
Explanation
Given:
p
sin
x
=
q
Now,
√
p
2
−
q
2
tan
x
=
√
p
2
−
p
2
sin
2
x
.
tan
x
=
√
p
2
(
1
−
sin
2
x
)
.
tan
x
=
p
√
(
1
−
sin
2
x
)
.
tan
x
.
.
.
.
(
∵
cos
2
θ
+
sin
2
θ
=
1
)
=
P
√
cos
2
x
.
tan
x
=
p
cos
x
tan
x
=
p
sin
x
=
q
|
tan
x
|
=
tan
x
+
1
cos
x
(
0
≤
×
≤
2
π
)
has
Report Question
0%
no solution
0%
one solution
0%
two solutions
0%
three solutions
Explanation
When,
x
∈
[
0
,
π
2
]
and
x
∈
[
π
,
3
π
2
]
Thus,
tan
x
>
0
hence,
|
tan
x
|
=
tan
x
hence,
|
tan
x
|
=
tan
x
+
1
cos
x
(
0
≤
×
≤
2
π
)
=
tan
x
=
tan
x
+
1
cos
x
=
cos
x
=
1
=
cos
x
=
cos
90
=
x
=
90
∘
But it is not possible since,
cos
x
≠
0
(
cos
x
being the denominator in the equation)
When,
x
∈
[
π
2
,
π
]
and
x
∈
[
3
π
2
,
2
π
]
Thus,
tan
x
<
0
hence,
|
tan
x
|
=
−
tan
x
hence,
|
tan
x
|
=
tan
x
+
1
cos
x
=
2
tan
x
=
1
cos
x
=
sin
x
=
1
2
This is not possible, as
sin
x
is not positive in these intervals of value of
x
Hence, the equation has no solution for any value of x.
If
8
tan
A
=
15
, then the value of
sin
A
−
cos
A
sin
A
+
cos
A
is:
Report Question
0%
7
23
0%
11
23
0%
13
23
0%
17
23
Explanation
8
tan
A
=
15
⇒
tan
A
=
15
8
Now,
sin
A
−
cos
A
sin
A
+
cos
A
Multiply and divide by
cos
A
=
sin
A
cos
A
−
cos
A
cos
A
sin
A
cos
A
+
cos
A
cos
A
=
tan
A
−
1
tan
A
+
1
Now, substitute the value of
tan
A
=
15
8
−
1
15
8
+
1
=
7
23
The number of solutions of the equation
sec
x
1
−
cos
x
=
1
1
−
cos
x
in
[
0
,
2
π
]
is equal to
Report Question
0%
3
0%
2
0%
1
0%
0
Explanation
sec
x
1
−
cos
x
=
1
1
−
cos
x
For
1
−
cos
x
≠
0
⇒
cos
x
≠
1
..(1)
Gives
sec
x
=
1
⇒
cos
x
=
1
...(2)
From (1) and (2) we get no solution.
If
x
=
2
sin
2
θ
,
y
=
2
cos
2
θ
+
1
, then the value of
x
+
y
is:
Report Question
0%
2
0%
3
0%
1
2
0%
1
Explanation
Given,
x
=
2
sin
2
θ
,
y
=
2
cos
2
θ
+
1
To find:
(
x
+
y
)
x
+
y
=
2
sin
2
θ
+
2
cos
2
θ
+
1
=
2
(
sin
2
θ
+
cos
2
θ
)
+
1
.....(As
sin
2
θ
+
cos
2
θ
=
1
)
=
2
+
1
=
3
The solution set of
(
5
+
4
c
o
s
θ
)
(
2
c
o
s
θ
+
1
)
=
0
in the interval
[
0
,
2
π
]
is
Report Question
0%
{
π
3
,
2
π
3
}
0%
{
π
3
,
π
}
0%
{
2
π
3
,
4
π
3
}
0%
{
2
π
3
,
5
π
3
}
Explanation
(
5
+
4
cos
θ
)
(
2
cos
θ
+
1
)
=
0
⇒
cos
θ
=
−
5
4
(not possible)
cos
θ
=
−
1
2
⇒
cos
θ
=
−
1
2
⇒
cos
θ
=
−
cos
π
3
=
cos
(
π
±
π
3
)
⇒
θ
=
2
π
3
,
4
π
3
(II and III quad, cosine is negaitve)
Which of the following is / are the value (S) of the expression?
sin A(1+ tan A) + cos A (1+ cot A) ?
1
. sec A + cosec A
2
. 2 cosec A ( sin A + cos A )
3
. tan A + cot A
Select the correct answer using the code given below.
Report Question
0%
1 only
0%
1 and 2 only
0%
2 only
0%
1 and 3 only
Explanation
sin
A
(
1
+
tan
A
)
+
cos
A
(
1
+
cot
A
)
=
sin
A
(
1
+
sin
A
cos
A
)
+
cos
A
(
1
+
sin
A
cos
A
)
=
(
sin
A
+
cos
A
)
(
sin
A
cos
A
+
cos
A
sin
A
)
=
(
sin
A
+
cos
A
)
(
sin
2
A
+
cos
2
A
sin
A
+
cos
A
=
sec
A
+
c
o
s
e
c
A
Thus, 1 satisfies the given equation.
If
sin
x
+
sin
2
x
=
1
then the value of
cos
2
x
+
cos
4
x
is equal to
Report Question
0%
1
0%
1
2
0%
1
3
√
3
0%
3
√
5
−
5
2
Explanation
Given,
sin
x
+
sin
2
x
=
1
⇒
sin
x
=
1
−
sin
2
x
⇒
sin
x
=
cos
2
x
Hence,
cos
2
x
+
cos
4
x
=
sin
x
+
sin
2
x
=
1
....(Given,
sin
x
+
sin
2
x
=
1
)
If
cos
θ
=
5
13
, where
θ
being an acute angle, then the value of
cos
θ
+
5
cot
θ
cosec
θ
−
cos
θ
will be
Report Question
0%
169
109
0%
155
109
0%
385
109
0%
95
109
Explanation
Given,
cos
θ
=
5
13
Then
sin
θ
=
12
13
Hence,
tan
θ
=
12
5
and
cosec
θ
=
13
12
Substituting in the equation, we get
=
5
13
+
5.5
12
13
12
−
5
13
=
5
(
12
)
+
25
(
13
)
13
(
13
)
−
5
(
12
)
=
60
+
300
+
25
169
−
60
=
385
109
Without using trigonometric tables evaluate:-
cos
2
20
∘
+
cos
2
70
∘
sec
2
50
∘
−
cot
2
40
∘
+
2
c
o
s
e
c
2
58
∘
−
2
cot
58
∘
tan
32
∘
−
4
tan
13
∘
tan
37
∘
tan
45
∘
tan
53
∘
tan
77
∘
Report Question
0%
1
0%
2
0%
-1
0%
-2
Explanation
cos
2
20
∘
+
cos
2
70
∘
sec
2
50
∘
−
cot
2
40
∘
+
2
csc
2
58
∘
−
2
cot
58
∘
tan
32
∘
−
4
tan
13
∘
tan
37
∘
tan
45
∘
tan
53
∘
tan
77
∘
=
cos
2
20
∘
+
sin
2
20
∘
sec
2
50
∘
−
tan
2
50
∘
+
2
csc
2
58
∘
−
2
cot
58
∘
cot
58
∘
−
4
tan
13
∘
cot
13
∘
cot
53
∘
tan
53
∘
tan
45
∘
=
1
1
+
2
csc
2
58
∘
−
2
cot
58
∘
cot
58
∘
−
4
×
1
×
1
×
1
=
1
+
2
(
csc
2
58
∘
−
cot
2
58
∘
)
−
4
=
1
+
2
−
4
=
−
1
tan
2
θ
1
+
sec
θ
+
1
equals to
Report Question
0%
tan
θ
0%
1
cos
θ
0%
sec
θ
−
1
0%
sec
θ
+
tan
θ
Explanation
tan
2
θ
1
+
sec
θ
+
1
=
sec
2
θ
−
1
1
+
sec
θ
+
1
=
(
sec
θ
+
1
)
(
sec
θ
−
1
)
1
+
sec
θ
+
1
=
sec
θ
−
1
+
1
=
sec
θ
=
1
cos
θ
Option B is correct.
√
1
−
sin
θ
1
+
sin
θ
is equal to ............
Report Question
0%
c
o
s
e
c
θ
−
cot
θ
0%
tan
θ
−
sec
θ
0%
sec
θ
−
tan
θ
0%
cot
θ
−
c
o
s
e
c
θ
Explanation
√
1
−
sin
θ
1
+
sin
θ
=
√
(
1
−
sin
θ
)
(
1
−
sin
θ
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
=
√
(
1
−
sin
θ
)
2
1
−
sin
2
θ
=
√
(
1
−
sin
θ
)
2
cos
2
θ
=
1
−
sin
θ
cos
θ
=
1
cos
θ
−
sin
θ
cos
θ
=
sec
θ
−
tan
θ
Hence, the answer is
sec
θ
−
tan
θ
.
The value of
(
1
+
tan
2
θ
)
(
1
+
cot
2
θ
)
is
Report Question
0%
tan
2
θ
0%
cot
2
θ
0%
sec
2
θ
0%
cosec
2
θ
Explanation
The value of
(
1
+
tan
2
θ
)
(
1
+
cot
2
θ
)
is
=
(
1
+
sin
2
θ
cos
2
θ
)
(
1
+
cos
2
θ
sin
2
θ
)
=
(
cos
2
θ
+
sin
2
θ
cos
2
θ
)
(
sin
2
θ
+
cos
2
θ
sin
2
θ
)
=
(
1
cos
2
θ
)
(
1
sin
2
θ
)
=
sin
2
θ
cos
2
θ
=
tan
2
θ
Hence, option A is correct.
The
△
A
B
C
has a right angle at C. If
sin
A
=
2
3
then
tan
B
is
Report Question
0%
3
5
0%
√
5
3
0%
2
√
5
0%
√
5
2
Explanation
⇒
sin
A
=
2
3
=
B
C
A
B
In right angled
△
A
B
C
,
⇒
A
C
2
+
B
C
2
=
A
B
2
⇒
A
C
2
=
A
B
2
−
B
C
2
=
9
−
4
⇒
A
C
=
√
5
⇒
tan
B
=
A
C
B
C
=
√
5
2
Hence, the answer is
√
5
2
.
The simplification of
√
1
+
cos
A
1
−
cos
A
gives
Report Question
0%
cosec
A
+
cot
A
0%
cosec
A
−
cot
A
0%
1
+
cos
A
sin
A
0%
Both A and C.
Explanation
√
1
+
cos
A
1
−
cos
A
=
√
1
+
cos
A
1
−
cos
A
×
1
+
cos
A
1
+
cos
A
=
1
+
cos
A
√
1
−
cos
2
A
=
1
+
cos
A
√
sin
2
A
=
1
+
cos
A
sin
A
...(i)
=
1
sin
A
+
cos
A
sin
A
=
cosec
A
+
cot
A
...(ii)
From (i) and (ii) , Option D is correct.
The expression
(
1
−
tan
A
+
sec
A
)
(
1
−
cot
A
+
cos
sec
A
)
has value
Report Question
0%
-1
0%
0
0%
+1
0%
+2
Explanation
(
1
−
tan
A
+
sec
A
)
(
1
−
cot
A
+
cosec
A
)
=
(
1
−
sin
A
cos
A
+
1
c
o
s
A
)
(
1
−
cos
A
sin
A
+
1
sin
A
)
=
(
cos
A
−
sin
A
+
1
cos
A
)
(
sin
A
−
cos
A
+
1
sin
A
)
=
(
cos
A
−
sin
A
+
1
cos
A
)
(
−
(
cos
A
−
sin
A
−
1
)
sin
A
)
=
−
(
(
cos
A
−
sin
A
)
+
1
cos
A
)
(
(
cos
A
−
sin
A
)
−
1
sin
A
)
=
−
(
cos
A
−
sin
A
)
2
−
1
sin
A
cos
A
=
−
(
cos
2
A
+
sin
2
A
−
2
sin
A
cos
A
)
−
1
sin
A
cos
A
=
−
(
1
−
2
sin
A
cos
A
)
−
1
sin
A
cos
A
=
−
−
2
sin
A
cos
A
sin
A
cos
A
=
2
Option D is correct.
In a right angled
Δ
A
B
C
right angled at
B
the ratio of
A
B
to
A
C
is
1
:
√
5
then
3
tan
θ
+
5
sec
2
θ
is
Report Question
0%
2
√
5
0%
3
+
√
5
0%
25
4
+
3
2
0%
√
5
+
1
2
Explanation
h
=
√
5
x
p
=
x
b
=
√
(
√
5
)
2
−
x
2
=
√
4
x
2
=
2
x
tan
θ
=
p
b
=
1
x
2
x
=
1
2
sec
θ
=
h
b
=
√
5
x
2
x
=
√
5
2
3
tan
θ
+
5
sec
2
θ
=
3
×
1
2
+
5
×
(
√
5
2
)
2
=
3
2
+
25
4
The value of
sin
2
53
+
cos
2
53
sec
2
37
−
tan
2
37
is
Report Question
0%
1
0%
2
0%
1
4
0%
3
2
Explanation
Given,
sin
2
53
+
cos
2
53
sec
2
37
−
tan
2
37
We know,
sin
2
θ
+
cos
2
θ
=
1
and
sec
2
θ
−
tan
2
θ
=
1
∴
sin
2
53
+
cos
2
53
sec
2
37
−
tan
2
37
=
1
Value of
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cot
θ
−
c
o
sec
θ
)
is:
Report Question
0%
1
0%
−
1
0%
2
0%
−
4
Explanation
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cot
θ
−
c
o
sec
θ
)
(
1
+
sin
θ
cos
θ
+
1
cos
θ
)
(
1
+
cos
θ
sin
θ
−
1
sin
θ
)
(
cos
θ
+
sin
θ
+
1
cos
θ
)
(
sin
θ
+
cos
θ
−
1
sin
θ
)
=
(
cos
θ
+
sin
θ
)
2
−
(
1
)
2
cos
θ
sin
θ
=
cos
2
θ
+
sin
2
θ
+
2
sin
θ
cos
θ
−
1
cos
θ
sin
θ
=
1
+
2
sin
θ
cos
θ
−
1
cos
θ
sin
θ
=
2
sin
θ
cos
θ
cos
θ
sin
θ
=
2
If
sec
θ
=
2
,
evaluating
1
−
tan
θ
1
+
tan
θ
gives
Report Question
0%
−
√
3
0%
√
3
+
1
0%
2
−
√
3
0%
√
3
+
1
2
Explanation
we know that,
sec
2
θ
−
tan
2
θ
=
1
⇒
tan
2
θ
=
sec
2
θ
−
1
⇒
tan
2
θ
=
4
−
1
[
g
i
v
e
n
sec
θ
=
2
]
⇒
tan
θ
=
√
3
Now,
1
−
tan
θ
1
+
tan
θ
=
1
−
√
3
1
+
√
3
×
1
−
√
3
1
−
√
3
=
1
+
3
−
2
√
3
1
−
3
=
4
−
2
√
3
−
2
=
√
3
−
2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page