Explanation
Given that,
Acceleration a=2.45m/s2
Mass of earth M=6×1024kg
Radius of earth R=6×106m
Gravitational constant G=6.67×10−11Nm2/kg
Now centripetal acceleration is
ac=v2R
ac=(√GMR)2R
ac=GMR2
ac=GM(R+h)2
Now, put the values
2.45=6.67×10−11×6×1024(6×106+h)2
(6×106+h)2=6.67×10−11×6×10242.45
(6×106+h)2=40.02×10132.45
(6×106+h)2=1.6334×1014
6×106+h=√1.6334×1014
h=1.278×107−6×106
h=(12.78−6)×106
h=6.78×106
h=6.8×106m
So, h≅R
Hence, the height of spaceship is R
If t1 and t2 are the time when the body is at the same height Then h = \dfrac{1}{2} \times g\times {t}_1\times {t}_2 h = \dfrac{1}{2} \times g\times {2}\times {10}h = 10 g
So that the correct option is D
g=9.8\,m/{{s}^{2}}
h=480\,km
R=6400\,km
We know that,
g'=g\left( 1-\dfrac{2h}{R} \right)
g'=9.8\left( 1-\dfrac{2\times 480}{6400} \right)
g'=8.33\,m/{{s}^{2}}
Hence, the value of g’ is 8.33\,m/{{s}^{2}}.
Net force on the rocket is zero. i.e. force due to the earth and force due to moon is same but in opposite direction.Fe=Fm\dfrac{GMe Mr}{re^2}=\dfrac{GMmMr}{rm^2}r is the total distancer= re+ rmMe=81 Mm\dfrac{a 81 Mm Mr}{re^2}=\dfrac{G M m Mr}{rm^2}r_m=\dfrac{r_e}{g}g rm +rm =r \Rightarrow 10 r_m=r\Rightarrow r_m=\dfrac{r}{10}
Weight of body W=144\,N
Height h=3R
Radius of earth =R
Acceleration due to gravity at the surface of the earth =g
Acceleration due to gravity at height g'=3R
Now,
\dfrac{g}{g'}={{\left( \dfrac{R}{R+h} \right)}^{2}}
\dfrac{g}{g'}={{\left( \dfrac{R}{R+3R} \right)}^{2}}
\dfrac{g}{g'}=\dfrac{1}{16}
Now, weight at the height
\dfrac{w'}{w}=\dfrac{mg'}{mg}
\dfrac{w'}{w}=\dfrac{1}{16}
w'=\dfrac{w}{16}
w'=\dfrac{144}{16}
w'=9\,N
Hence, the weight at the height is 9\ N
Please disable the adBlock and continue. Thank you.