Explanation
$$E=\dfrac{GM}{R^{2}}$$$$=\dfrac{G\left ( \dfrac{4}{3}\pi R^{3}\rho \right )}{R^{2}}$$
$$\Rightarrow E\propto R$$
$$\Rightarrow \dfrac{E_{1}}{E_{2}}=\dfrac{R_{1}}{R_{2}}$$$$=2$$
$$\Rightarrow (A)$$ is not true
$$\dfrac{E_{1}}{E_{3}}=\dfrac{R_{1}}{R_{3}}$$$$=3$$
$$\Rightarrow (B)$$ is true
$$v=\sqrt{gR}\Rightarrow v\alpha R$$
$$\dfrac{v_{1}}{v_{2}}=\dfrac{R_{1}}{R_{2}}=2$$
$$\Rightarrow (C)$$ is true
$$\dfrac{v_{1}}{v_{3}}=\dfrac{R_{1}}{R_{3}}=3$$
$$\Rightarrow (D)$$ is not true
Net force towards centre of earth $$\displaystyle ={mg}'=\dfrac {mgx}{R}$$
Normal force $$\displaystyle N={mg}'sin \theta$$
Thus pressing force $$\displaystyle N=\dfrac {mgx}{R}\dfrac {R}{2x}$$
$$\displaystyle N=\dfrac {Mg}{2}$$ constant and independent of $$x$$. Hence $$(b)$$.
Tangential corce. $$\displaystyle F=ma={mg}'cos \theta$$
$$\displaystyle Q={g}'cos \theta=\dfrac {gx}{R} \dfrac {\sqrt {\dfrac {R^2}{4}-x^2}}{x}$$
$$\displaystyle a=\dfrac {gx}{R}\sqrt {R^2-4x^2}$$
Curve is parabolic and at $$\displaystyle x=\dfrac {R}{2},a=0$$, Hence $$(C)$$
Radius of hollow sphere is $$\displaystyle \dfrac{R}{2}$$, so mass in this hollow portion would had been, $$\displaystyle \dfrac{M}{8}$$.
Now net force on m due to whole sphere $$=$$ force due to remaining mass $$+$$ force due to cavity mass.
$$\therefore $$ Force due to remaining mass=force due to whole sphere-force due to cavity mass
$$\displaystyle =\dfrac{GMm}{d^{2}}-\dfrac{GMm}{8\left ( d-R/2 \right )^{2}}$$
$$\displaystyle =\dfrac{GMm}{d^{2}}\left [ 1-\dfrac{1}{8\left ( 1-\dfrac{R}{2d} \right )^{2}} \right ]$$
Please disable the adBlock and continue. Thank you.