Explanation
{g^1} = g\left( {1 - {h \over R}} \right)
g = g\left( {1 - {h \over R}} \right)
1 = {h \over R},h = R
Given,
Radius of rotation become double, {{a}_{2}}=2{{a}_{1}}
By Kepler’s law, T ^ { 2 }\alpha \,\,{{a}^{3}}
\dfrac { T _ { 1 } ^ { 2 } } { a _ { 1 } ^ { 3 } }= \dfrac { T _ { 2 } ^ { 2 } } { a _ { 2 } ^ { 3 } }
T _ { 2 } ^ { 2 }= \left( \dfrac { a _ { 2 } } { a _ { 1 } } \right) ^ { 3 } \times T _ { 1 } ^ { 2 }
T _ { 2 } ^ { 2 } ={{\left( \dfrac{2}{1} \right)}^{3}}\times T_{1}^{2}
T _ { 2 } ^ { 2 } =8\times T_{1}^{2}
T _ { 2 } ^ { 2 } =\sqrt{8}\times 365\text{ days }
{{T}_{2}}=1032.37\text{ days }
Hence, 1032 days in year.
Please disable the adBlock and continue. Thank you.