Explanation
Given,
λ=hceV where, V=potential
λ α 1V
10−10 α 1150 ...... (1)
λ α 1600 ...... (2)
Divide (2) by (1)
λ10−10=150600=14
⇒λ=0.25×10−10m =0.25 Ao
For perfect gas,
Kinetic Energy of n molecule, K.E=n\left( \dfrac{1}{2}{{K}_{B}}T \right)
Where, {{K}_{B}} is Boltzmann constant
If there is no loss of energy.
Total kinetic energy of mixture is sum of each gas kinetic energy.
{{n}_{total}}K.{{E}_{total}}={{n}_{1}}K.{{E}_{1}}+{{n}_{2}}K.{{E}_{2}}+{{n}_{3}}K.{{E}_{3}}
\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)\left( \dfrac{1}{2}{{K}_{B}}T \right)={{n}_{1}}\left( \dfrac{1}{2}{{K}_{B}}{{T}_{1}} \right)+{{n}_{2}}\left( \dfrac{1}{2}{{K}_{B}}{{T}_{2}} \right)+{{n}_{3}}\left( \dfrac{1}{2}{{K}_{B}}{{T}_{3}} \right)
T=\dfrac{{{n}_{1}}{{T}_{1}}+{{n}_{2}}{{T}_{2}}+{{n}_{3}}{{T}_{3}}}{{{n}_{1}}+{{n}_{2}}+{{n}_{3}}}
From ideas gas equation
PV=nRT
PV=\dfrac{m}{{{M}_{o}}}RT
m=\dfrac{PV{{M}_{o}}}{RT}\
In first event
{{m}_{1}}=\dfrac{{{P}_{1}}V{{M}_{o}}}{R{{T}_{1}}}
6\ gram=\dfrac{PV{{M}_{o}}}{R\times 400}\
\dfrac{{{\operatorname{PVM}}_{o}}}{R}=400\times 6\ .\ .....\ (1)
In the second event when hole is made:
{{m}_{2}}=\dfrac{{{P}_{2}}V{{M}_{o}}}{R{{T}_{2}}}
{{m}_{2}}=\dfrac{\dfrac{P}{2}V{{M}_{o}}}{R\times 300}\ =\dfrac{1}{300\times 2}\dfrac{PV{{M}_{o}}}{R}
{{m}_{2}}=\dfrac{1}{300\times 2}\times \left( 400\times 6 \right)=4\ gram
Leak out oxygen is \left( 6gram-4\,gram \right)\ =\ 2\,gram
Please disable the adBlock and continue. Thank you.