Explanation
Force on particle along the cord = mg\cos { \theta }
Distance travelled by the particle =\quad \dfrac { d }{ \cos { \theta } }, where d is the diameter or the vertical circle.
s = \dfrac { a{ t }^{ 2 } }{ 2 }
\Rightarrow\ t =\sqrt { \dfrac { 2s }{ a } }.
Hence,\ t is independent of \theta.
a= g\cos{\theta}\\AB = 2R\cos{\theta}\Rightarrow v^2 =u^2 + 2as \\v^2 = 0 + 2 (g\cos{\theta}) 2R\cos{\theta}\Rightarrow v^2 = 4gR \cos ^{2 }{\theta}\\ \Rightarrow v = 2\sqrt{ gR} \cos{\theta}
Using the relation for the radius (r) of loop.
\displaystyle \tan { \theta } =\frac { { v }^{ 2 } }{ rg }
or, \displaystyle \tan { { 12 }^{ o } } =\frac { { \left( 150 \right) }^{ 2 } }{ r\times 10 }
or, \displaystyle r=\frac { 2250 }{ 0.2125 } =10.6\times { 10 }^{ 3 }m=10.6\quad km
Please disable the adBlock and continue. Thank you.