Explanation
In equilibrium, when sliding stops
N=mg\cos\theta…(1)
And f=mg\sin\theta=\mu N…(1)
Dividing (2) by(1)\\ \Rightarrow \mu=\tan\theta=0.75=\cfrac{3}{4}\\ \Rightarrow \theta=37°
For downward direction
Force equation in perpendicular direction is given as
N=mg\cos \theta
{{f}^{'}}=\mu mg\cos \theta
Force equation parallel to incline is
f+{{f}^{'}}=mg\sin \theta
f+\mu mg\cos \theta =mg\sin \theta
f=mg\sin \theta -\mu mg\cos \theta ..............(1)
For upward direction
{{f}^{'}}=\mu N
f'=\mu mg\cos \theta
2f=mg\sin \theta +f'
2f=mg\sin \theta +\mu mg\cos \theta ............(2)
From equation (1),equation (2) becomes
2mg\sin \theta -2\mu mg\cos \theta =mg\sin \theta +\mu mg\cos \theta
mg\sin \theta =3\mu mg\cos \theta
\tan \theta =3\mu
\mu =\frac{\tan \theta }{3}
{ T }_{ max }=\cfrac { m{ v }_{ max }^{ 2 } }{ r } +mg
where { T }_{ max } is maximum tension
m is mass
x is radius
and g is acceleration due to gravity
{ T }_{ max }=m{ { w }_{ max }^{ 2 } }r+mg
where w=\cfrac { v }{ r } is angular velocity
\cfrac { { T }_{ max } }{ m } =m{ { w }_{ max }^{ 2 } }r+g
\cfrac { 30 }{ 0.5 } ={ { w }_{ max }^{ 2 } }2+10\\ \Rightarrow { w }_{ max }^{ 2 }=25\\ \Rightarrow { w }_{ max }=5 rad/s
Please disable the adBlock and continue. Thank you.