Explanation
where $$σ$$ is Poisson's ratio.
Given that,
Length of rubber band, $$l=8\,cm$$
Density, $$d=1.5\,Kg/{{m}^{3}}$$
Young’s modulus, $$Y=5\times {{10}^{8}}\,N/{{m}^{2}}$$
The relation for increase in length and young’s modulus is as follows:
$$ l=\dfrac{{{L}^{2}}dg}{2Y} $$
$$ l=\dfrac{{{(8\times {{10}^{-2}})}^{2}}1.5\times 10}{2\times 5\times {{10}^{8}}} $$
$$ l=\dfrac{64\times {{10}^{-4}}\times 1.5\times 10}{{{10}^{9}}} $$
$$ l=96\times {{10}^{-12}} $$
$$ l=9.6\times {{10}^{-11}}\,m $$
Please disable the adBlock and continue. Thank you.