Explanation
In Young's double slit experiment, the two equally bright slits are coherent, but of phase difference $$\dfrac{\pi}{3}$$ .If maximum intensity on the screen is$$I_0$$, the intensity at the point on the screen equidistant from the slits is____?
The average depth of Indian Ocean is about 3000 m. Calculate the fractional compression,$$\frac{\Delta V}{V}$$ of water at the bottom of the ocean, given that the bulk modulus of water is $$2.2 \times 10^9Nm^{-2}$$ (consider $$g=10 ms^{-2}$$)
A uniform heavy rod of length $$L$$, weight $$W$$ and cross-sectional area $$A$$ is hanging from a fixed support. Young's modulus of the material is $$Y$$. Find the elongation of the rod.
$$\displaystyle =\frac{(L-x)Wdx}{LAY};\:Total\:elongation=\frac{W}{LAY}\int_{0}^{L}(L-x)dx$$$$\displaystyle =\frac{WL}{2AY}$$
(c) $$\displaystyle Y=\dfrac{Fl}{A\Delta l}=\dfrac{2Mg(1-\cos\theta)L}{\pi\dfrac{d^{2}}{4}\Delta l}$$
or $$\displaystyle 1-\cos\theta=\dfrac{Y\pi d^{2}\Delta l}{8MgL}$$ or $$\displaystyle \cos\theta=1-\dfrac{Y\pi d^{2}\Delta l}{8MgL}$$
Here we have used the energy conservation
$$KE=PE$$
$$\displaystyle \dfrac{mv^{2}}{2}=mgl(1-\cos\theta)$$
or $$\displaystyle \dfrac{mv^{2}}{l}=2mg(1-\cos\theta)$$
Thus
$$\displaystyle \theta=\cos^{-1}\left(1-\dfrac{Y\pi d^{2}\Delta l}{8MgL}\right)$$
Please disable the adBlock and continue. Thank you.