Explanation
$$\displaystyle y=\dfrac{F/A}{\dfrac{\Delta l}{l}}$$
$$\displaystyle \Delta l=\frac{Fl}{Ay}$$
$$\displaystyle \Delta l=\frac{Mgl}{Ay}$$
$$\displaystyle \Delta l=\frac{1\times 10\times 1.1}{1\times 10^{-6}\times 1.1\times 10^{11}}=1\times 10^{-4}=0.1\:mm$$
$$\displaystyle Y=\frac{F/A}{\frac{\Delta l}{l}}$$ $$\displaystyle F=\frac{YA\Delta l}{l}$$
$$\displaystyle F=Y.\pi r^{2}\frac{\Delta l}{l}$$
$$\displaystyle F=0.9\times 10^{11}\times 3.14\times \left ( \frac{0.6}{2}\times 10^{-3} \right )^{2}\times \frac{0.2}{100}$$
$$\displaystyle F=0.9\times 10^{11}\times 3.14\times \times 0.09\times 10^{-6}\times 2\times 10^{-3}$$
$$\displaystyle F=51\:N$$
$$\displaystyle Y=\frac{F/A}{\Delta l/l}$$ ; $$Y$$ & $$\displaystyle \frac{\Delta l}{l}=constant$$
$$\displaystyle F\propto A\propto r^{2}$$ $$\displaystyle \frac{F_{2}}{F_{1}}=\left ( \frac{r_{2}}{r_{1}} \right )^{2}=\left ( \frac{4r}{r} \right )^{2}=16$$
$$F_{2}=16\times 10^{3}\:N$$
Please disable the adBlock and continue. Thank you.