Explanation
Centripetal acceleration and tangential acceleration is normal to each other.
Centripetal acceleration, $${{a}_{c}}=\dfrac{{{v}^{2}}}{r}=\dfrac{{{20}^{2}}}{50}=8\,m{{s}^{-2}}$$
Tangential acceleration, $${{a}_{t}}=0$$
Hence, magnitude of acceleration is $$8\,m{{s}^{-1}}$$
The acceleration will be directed towards the centre of the circular loop.
angular velocity = 2πf = 2 x 22/7 x 14/25 = 88/25 rad/s
Centripetal acceleration = rω2 = 0.8 m x 88 x 88 / 225 = 27.53 m/s2
LetAngle of projection for A=30oAngle of projection for B=60oRequired condition:Distance traveled by A−Distance traveled by B=x[u3√]cos30o×t−ucos60o×t=x[u3√](3√2)×t−u(12)×t=xut[32−12]=xut=xt=xu
Moment of inertia of uniform rod of length(l) -
$$I=\dfrac { M{ l }^{ 2 } }{ 12 } $$
- wherein
About axis passing through its center & perpendicular to its length.
Law of conservation of angular moment -
$$\vec { r } =\dfrac { d\vec { L } }{ dt } $$
If net torque is zero
i.e $$\dfrac { d\vec { L } }{ dt } =0,\quad $$
$$\overrightarrow { L } =$$ constant
angular momentum is conserved only when external torque is zero .
Centre of mass from system from 0
$$=>\dfrac { 8m\times 0\quad +m(\dfrac { L }{ 3 } )-\quad 2m(\dfrac { L }{ 6 } ) }{ 8m+m+2m } =0$$
So,centre of mass is at zero.
From conservation of ang.momentum; $${ L }_{ i }={ L }_{ f }$$
$${ L }_{ i }=m(2v)\times (\dfrac { L }{ 3 } )+\quad 2mv\times (\dfrac { L }{ 6 } )=mvL$$
$${ L }_{ f }=[(8m)\times \dfrac { { L }^{ 2 } }{ 12 } +\quad m{ (\dfrac { L }{ 3 } ) }^{ 2 }+2m{ (\dfrac { L }{ 6 } ) }^{ 2 }]\omega $$
$$=[\dfrac { 2 }{ 3 } m{ L }^{ 2 }+\dfrac { m{ L }^{ 2 } }{ 9 } +\dfrac { m{ L }^{ 2 } }{ 18 } ]\omega $$
$$=(\dfrac { 12+2+1 }{ 18 } )m{ L }^{ 2 }\omega =\frac { 5 }{ 6 } m{ L }^{ 2 }\omega $$
$$\dfrac { 5 }{ 6 } m{ L }^{ 2 }\omega =mvl,$$
$$\therefore \omega =\dfrac { 6v }{ 5L } $$
A particle is moving in $$xy - plane$$ in a circular path with center at the origin. If at an instant the position of the particle is given by $$\frac{1}{{\sqrt 2 }}\left( {\hat i + \hat j} \right)$$, then the velocity of the particle is along
Correct answer: Option A
Hint: Differentiation of displacement gives velocity and differentiation of velocity gives acceleration with respect to time.
Explanation of correct option:
Given: Displacement - Time relation
$$x = {(t + 5)^{ - 1}}$$...................(i)
Step 1:Differentiating both side w.r.t. $$'t'$$ of equation (i)
We get,
$$\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}{(t + 5)^{ - 1}}$$
$$\therefore\dfrac{dx}{dt} = ( - 1){(t + 5)^{ - 2}}(1 + 0)$$
$$\dfrac{dx}{dt}$$ is velocity.
$$ \Rightarrow v = - {(t + 5)^{ - 2}}$$...................(ii)
Step 2:Differentiating both side w.r.t. $$'t'$$ of equation (ii)
$$\dfrac{{dv}}{{dt}} = \dfrac{d}{{dt}}[ - {(t + 5)^{ - 2}}]$$
$$\therefore \dfrac{dv}{dt}$$ = $$- ( - 2){(t +5)^{ - 3}}.(1)$$
$$\dfrac{dv}{dt}$$ is acceleration.
Formatting equation (iii) to out the value of equation (ii)
$$ \Rightarrow a = 2 \times \left\{ { - {{(t + 5)}^{ - 2}}} \right\}\left\{ { - {{(t + 5)}^{ - 2 \times \dfrac{1}{2}}}} \right\}$$
$$ \Rightarrow a = 2v \times {v^{\frac{1}{2}}}$$
$$\therefore a = 2{v^{\frac{3}{2}}}$$
As $$2$$ is constant so $$a$$ varies with $$v$$ such as
$$a \propto {v^{\frac{3}{2}}}$$ i.e. $$(acceleration) \propto (velocity)^{\frac{3}{2}}$$
Hence, Acceleration of a particle is proportional to $$ (velocity)^{\frac{3}{2}}$$
When a move in circular motion, centripetal force will act on the body toward center.
When body moves with uniform angular velocity in circular path.
Then,
(i) Centripetal force, $${{F}_{c}}=m\omega {{l}^{2}}$$
(ii) Speed of the particle, $$v=\omega l$$
(iii) Because it is horizontal circle and there is no gravity. Therefore there is no force in vertical direction.
$${\textbf{Step1: Identify the values that are given.}}$$
$${\text{Radius = R}}$$
$${\text{Static friction = }}\mu $$
$${\text{Now, the centripetal force is providing by frictional force between the road and tyre}}$$
$${\textbf{Step2: Find v. }}$$
$$\text{The centripetal force is given by } \dfrac{{m{v^2}}}{R} $$
$$\text{and the frictional force is } = \mu mg $$
$$\text{For avoiding car to skid the cetripetal force must be equal to frictional force } $$
$$\dfrac{{m{v^2}}}{R} = \mu mg$$
$$v = \sqrt {\mu Rg} $$
$${\text{Hence,this is the required solution}}$$
$${\textbf{Hence,}}$$ $${\textbf{the final answer is }}$$ $$\mathbf {v =} $$ $$\mathbf { { \sqrt {\mu Rg} .}}$$
Please disable the adBlock and continue. Thank you.