Explanation
$$\vec{a}=5\,cos\,t\hat {i}-3\,sin\,t\hat {j}$$
$$\Rightarrow \int d\vec{v}=\int 5\,cos\,t\;dt\hat {i}-\int 3\,sin\,t\;dt\hat {j}$$
Therefore $$\underset{-3}{\overset{v}{\int}}dv_{x}=\underset{0}{\overset{t}{\int}}5\,cos\,t\;dt\Rightarrow v_x=5\,sin\,t-3$$
$$\displaystyle\frac{dx}{dt}=(5sint-3)\Rightarrow \underset{-3 }{\overset{x}{\int}}dx=\underset {0}{\overset{t}{\int}}(5\,sin\,t-3)dt$$
$$x+3=5-5\,cos\,t-3t\Rightarrow x=2-5\,cos\,t-3t$$
Similarly,
$$\underset{2}{\overset{v}{\int}}dv_{y}=-\underset{0}{\overset{t}{\int}}3\,sin\,t\,dt$$
$$\Rightarrow v_y-2=3(cos\,t-1)\Rightarrow v_y=3\,cos\,t-1$$
$$\Rightarrow \underset{2}{\overset{y}{\int}}dy=\underset{0}{\overset{t}{\int}}(3\,cos\,t-1)dt$$
$$\Rightarrow y-2=3\;sin\,t-t\Rightarrow y=2+3\,sin\,t-t$$
Thus, $$\vec{v}=(5\,sin\,t-3)\hat {i}+(3\,cos\,t-1)\hat {j}$$
and $$\vec{s}=(2-5\,cos\,t-3\,t)\hat {i}+(2+3\,sin\,t-t)\hat {j}$$
Please disable the adBlock and continue. Thank you.