Explanation
→a=5costˆi−3sintˆj
⇒∫d→v=∫5costdtˆi−∫3sintdtˆj
Therefore v∫−3dvx=t∫05costdt⇒vx=5sint−3
dxdt=(5sint−3)⇒x∫−3dx=t∫0(5sint−3)dt
x+3=5−5cost−3t⇒x=2−5cost−3t
Similarly,
v∫2dvy=−t∫03sintdt
⇒vy−2=3(cost−1)⇒vy=3cost−1
⇒y∫2dy=t∫0(3cost−1)dt
⇒y−2=3sint−t⇒y=2+3sint−t
Thus, →v=(5sint−3)ˆi+(3cost−1)ˆj
and →s=(2−5cost−3t)ˆi+(2+3sint−t)ˆj
Please disable the adBlock and continue. Thank you.