Explanation
Let after a time t, the cyclist overtake the bus. Then
96+12×2×t2=20×t or t2−20t+96=0
∴
\quad \quad =\displaystyle\dfrac { 20\pm 4 }{ 2 } =8 sec and 12 sec
But since they won't meet again after they have crossed each other once, so only 8 seconds is the answer since they are headed in different directions.
Let a be the constant acceleration of the particle. Thens=ut+\displaystyle\dfrac { 1 }{ 2 } a{ t }\displaystyle^{ 2 } or { s }_{ 1 }=0+\displaystyle\dfrac { 1 }{ 2 } \times a\times { \left( 10 \right) }\displaystyle^{ 2 }=50aand { s }_{ 2 }=\left[ 0+\displaystyle\dfrac { 1 }{ 2 } a{ \left( 20 \right) }^{ 2 } \right] -50a=150a
\therefore \quad { s }_{ 2 }=3{ s }_{ 1 }
Alternatively:Let a be constant acceleration and
s=ut+\displaystyle\dfrac { 1 }{ 2 } a{ t }\displaystyle^{ 2 }, then { s }_{ 1 }=0+\displaystyle\dfrac { 1 }{ 2 } \times a\times 100=50a
Velocity after 10 sec. is v=0+10a
So, { s }_{ 2 }=10a\times 10+\displaystyle\dfrac { 1 }{ 2 } a\times 100=150a\Rightarrow { s }_{ 2 }=3{ s }_{ 1 }
Let a be constant acceleration, using s=ut+\displaystyle\dfrac { 1 }{ 2 } a{ t }\displaystyle^{ 2 }
so distance coreved in first 10 seconds { s }_{ 1 }=0+\displaystyle\dfrac { 1 }{ 2 } \times a\times 100=50a
So, distance covered in next 10 seconds { s }_{ 2 }=10a\times 10+\displaystyle\dfrac { 1 }{ 2 } a\times 100=150a\Rightarrow { s }_{ 2 }=3{ s }_{ 1 }
The ball is thrown up and it returns in 6 sec,
Time of accent = Time of decent
So, time to reach the highest point =6/2 = 3 s
By 2nd equation of motion
s = ut + \dfrac{1}{2}gt^{2}
To calculate height, consider motion of the ball from highest point to the ground
H = \dfrac{1}{2}gt^{2} = \dfrac{1}{2} \times 10 \times 3^{2} =45\ m
To calculate projection velocity, consider motion of the ball from projection to return to the point of projection.
0=ut-\dfrac{1}{2}gt^2
u=10 \times 6/2=30\ m/s
200=u\times 2+\dfrac{1}{2}a(2)^{2}
100=u+a..........(i)
420=u(6)+\dfrac{1}{2}a(6)^{2}
70=u+3a..........(ii)
from (i) and (ii) 2a=-30\Rightarrow a=-15cm/s^{2}
\therefore u=100-a=100-(-15)=115\;cm/s
u_{7^{th}}=u+at=115+(-15)(7)=115-105=10\;cm/sec
Please disable the adBlock and continue. Thank you.