Explanation
Apply equation of kinematic
$$s=ut+\dfrac{1}{2}a{{t}^{2}}$$
$$ {{t}^{2}}+\dfrac{2ut}{a}-\dfrac{2s}{a}=0 $$
$$ {{t}^{2}}+pt-ks=0 $$
Where, $$p=\dfrac{2u}{a}\,\,and\,\,k=\dfrac{2}{a}$$
$$t=\dfrac{-p\pm \sqrt{{{p}^{2}}+ks}}{2}$$
Hence, time is directly proportional to root of displacement.
Let assume initial velocity is $$u$$ and constant acceleration $$a$$. using $$s$$=$$ut$$ + $$(0.5)at^2$$,
for first $$5$$ second
$$10$$ = $$5u$$ + $$(0.5)a(25)$$
for next 3 seconds, $$t = 8$$ and $$s = 20$$
$$20 = 8u + (0.5)a(64)$$
Solving,
$$a = {\dfrac{1}{3}}$$ and $$u = {\dfrac{7}{6}}$$
Now for next $$2$$ seconds, $$t = 10$$ and $$S'$$:
$$S' = (10){\dfrac{7}{6} +(0.5){\dfrac{1}{3}}(100)}$$
$$S'$$ = $${\dfrac{170}{6}}$$
Now distance travelled in $$2$$ sec = $${\dfrac{170}{6}} - {20} = {\dfrac{50}{6}}$$ meter
Given that,
Initial velocity $$u=20\,m/s$$
Final velocity $$v=0$$
Now, from equation of motion
$$ v=u-gt $$
$$ 0=20-10t $$
$$ {{t}_{1}}=\dfrac{20}{10} $$
$$ {{t}_{1}}=2\,s $$
Total time
$$ t=2{{t}_{1}} $$
$$ t=2\times 2 $$
$$ t=4\,s $$
Hence, the time is $$4\ s$$
Given,
Initial velocity $$=u$$
After $$2\ cm\,$$penetration, velocity $$v=\dfrac{u}{2}$$
$$ {{v}^{2}}-{{u}^{2}}=2as $$
$$ {{\left( \dfrac{u}{2} \right)}^{2}}-{{u}^{2}}=2a\times 2 $$
$$ a=\dfrac{-3{{u}^{2}}}{16} $$
When, Final velocity $${{v}_{1}}=\dfrac{u}{4}$$
Apply kinematic equation of motion
$$ v_{1}^{2}-{{u}^{2}}=2a{{s}_{1}} $$
$$ {{\left( \dfrac{u}{4} \right)}^{2}}-{{u}^{2}}=2\left( \dfrac{-3{{u}^{2}}}{16} \right){{s}_{1}} $$
$$ {{s}_{1}}=2.5\ cm $$
Hence, for final velocity to be one fourth of initial velocity, body penetrate $$0.5\ cm$$ more in wood.
Horizontal velocity, $${{v}_{x}}=20\,m{{s}^{-1}}$$
Vertical initial velocity, $${{u}_{y}}=25\,m{{s}^{-1}}$$
Acceleration of gravity, $${{a}_{y}}=-10\,m{{s}^{-2}}$$
$$ {{v}_{y}}={{u}_{y}}+{{a}_{y}}t $$
$$ {{v}_{y}}=25-10\times 2=5\,m{{s}^{-1}} $$
Hence, velocity $$20\,m{{s}^{-1}}$$ horizontal and $$5\,m{{s}^{-1}}$$ upward
Mass $$m=2\,kg$$
Initial velocity $$u=0\,m/s$$
Final velocity $$v=20\,m/s$$
Time $$t=4\,s$$
Now, the acceleration is
$$ v=u+at $$
$$ a=\dfrac{v-u}{t} $$
$$ a=\dfrac{20}{4} $$
$$ a=5\,m/{{s}^{2}} $$
Now, the force is
$$ F=ma $$
$$ F=2\times 5 $$
$$ F=10\,N $$
Now, the displacement is
$$ s=ut+\dfrac{1}{2}a{{t}^{2}} $$
$$ s=0+\dfrac{1}{2}\times 5\times 16 $$
$$ s=40\,m $$
Now, the work done is
$$ W=F\centerdot s $$
$$ W=10\times 40 $$
$$ W=400\,J $$
Now, the power is
$$ P=\dfrac{W}{t} $$
$$ P=\dfrac{400}{2} $$
$$ P=200\,watt $$
Hence, the power is $$200\ watt$$
Acceleration $$a=2\,m/{{s}^{2}}$$
Retardation $$a=-3\,m/{{s}^{2}}$$
Time $$t=10\,s$$
The maximum velocity attained be v at t
$$ v=0+2\times t $$
$$ v=2t\,m/s.....(I) $$
Now, again it reaches velocity 0 after 10 s with retardation
$$ 0=v-3\left( 10-t \right) $$
Now from equation (I)
$$ 2t-3\left( 10-t \right)=0 $$
$$ 2t-30+3t=0 $$
$$ 5t=30 $$
$$ t=6\,s $$
Now, put the value of t in equation (I)
$$ v=2t $$
$$ v=2\times 6 $$
$$ v=12\,m/s $$
Hence, the maximum speed is $$12\ m/s$$
Final velocity $$v=0\,m/s$$
Acceleration $$a=-10\,m/{{s}^{2}}$$
Now, the time by ball reach its maximum height
From equation of motion
$$ t=2\,s $$
So, the time taken by the same ball to return to the hands of the juggler is
$$ =\dfrac{2u}{g} $$
$$ =\dfrac{2\times 20}{10} $$
$$ =4\,s $$
So, he is throwing the balls after 1 sec each,
Let at some instant he throws ball number 4.
Now, Before 1 s of throwing it, he throws ball 3.
So, the height of ball 3 is
$$ {{h}_{3}}=20\times 1-\frac{1}{2}\times 10\times {{\left( 1 \right)}^{2}} $$
$$ {{h}_{3}}=15\,m $$
Before 2s, he throws ball 2, so the height of ball 2 is
$$ {{h}_{2}}=20\times 2-\frac{1}{2}\times 10\times 4 $$
$$ {{h}_{2}}=20\,m $$
Before 3s, he throws ball 1, so the height of ball 1 is
$$ {{h}_{1}}=20\times 3-\frac{1}{2}\times 10\times 3\times 3 $$
Hence, the height of balls in air from the ground will be $$15\ m$$, $$20\ m$$, $$15\ m$$ and $$0\ m$$
Hint: Apply kinematical equations.
Correct Option: Option A
Explanation for correct answer:
Step 1: Find the length of train in terms of velocity and acceleration.
$$L = \dfrac{{{{(2u)}^2} + {u^2}}}{{2a}} = \dfrac{{3{u^2}}}{{2a}}$$ ------(1)
Step 2: Find the velocity of midpoint.
$$\dfrac{L}{2} = \dfrac{{{v^2} - {u^2}}}{{2a}}$$
$$ \Rightarrow \dfrac{{3{u^2}}}{{4a}} = \dfrac{{{v^2} - {u^2}}}{{2a}}$$
$$ \Rightarrow v = \sqrt {2.5} u$$ $$m/s$$
So, the velocity with which, the middle point of the train passes the same point is $$\sqrt {2.5} u$$ $$m/s$$.
Acceleration, $$a=\frac{dv}{dt}=4-2t$$
At t = 0 s , $$a=4m/{{s}^{2}}$$
At t = 1 s, $$a=2\,m/{{s}^{2}}$$
At t = 2 s, $$a=0$$
At t = 3 s, $$a=4-6=-2\,m/{{s}^{2}}$$
Hence, the acceleration of the body is initially positive but after some time it becomes negative.
Height $$h=5\,m$$
$$g=10\,m/{{s}^{2}}$$
Now, for first drop
$$ {{s}_{1}}=ut+\dfrac{1}{2}g{{t}^{2}} $$
$$ 5=0+5{{t}^{2}} $$
$$ t=1\,\sec $$
It means that the third drop leaves after one second of the first drop. Or, each drop leaves after every $$0.5\ sec$$
Now, distance covered by the second drop in $$0.5\ s$$
$$ {{s}_{2}}=ut+\dfrac{1}{2}g{{t}^{2}} $$
$$ s=0+\dfrac{1}{2}\times 10\times 0.5\times 0.5 $$
$$ s=1.25\,m $$
Therefore, the distance of the second drop above the ground
$$ s={{s}_{1}}-{{s}_{2}} $$
$$ s=5-1.25 $$
$$ s=3.75\,m $$
Hence, this is the required solution
$$ a=b{{t}^{n}} $$
$$ \dfrac{dv}{dt}=b{{t}^{n}} $$
$$ dv=b{{t}^{n}}dt $$
$$ v=b\dfrac{{{t}^{n+1}}}{n+1}........(1) $$
$$ \dfrac{dr}{dt}=b\dfrac{{{t}^{n+1}}}{n+1} $$
$$ dr=\dfrac{b}{n+1}\int{{{t}^{n+1}}dt} $$
$$ r=\dfrac{b}{n+1}\dfrac{{{t}^{n+2}}}{n+2} $$
$$ r=\dfrac{Vt}{n+2}\,\,(from\,1) $$
$$ at\,\,t=\,1\,s $$
$$ V=(n+2)r $$
The formula for time of flight is
$$T=\dfrac{2u\sin \theta }{g}$$
It is given that time is 2 seconds. So,
$$ 2=\dfrac{2u\sin \theta }{g} $$
$$ g=u\sin \theta $$
Squaring both sides
$${{g}^{2}}={{u}^{2}}{{\sin }^{2}}\theta ........(1)$$
Height travelled is
$$ H=\dfrac{{{u}^{2}}{{\sin }^{2}}\theta }{2g} $$
$$ H=\dfrac{{{g}^{2}}}{2g}\,\,\,\,(from\,\,1) $$
$$ H=\dfrac{g}{2}=5\,m $$
Mass of ship, $$M=3\times {{10}^{7}}\,kg$$
Force, $$F=5\times {{10}^{4}}\,N$$
Distance, $$s=3\,m$$
Acceleration, $$a=\dfrac{F}{M}=\dfrac{5\times {{10}^{4}}}{3\times {{10}^{7}}}=\dfrac{1}{600\,}\,m{{s}^{-2}}$$
$$ v=\sqrt{2as}=\sqrt{2\times \dfrac{1}{600}\times 3}=0.1\,m{{s}^{-1}} $$
Hence, velocity of ship $$0.1\,m{{s}^{-1}}$$
Distance $$s=45\,m$$
Initial velocity $$u=0$$
We know that,
By using equation of motion
$$ {{v}^{2}}={{u}^{2}}+2as $$
$$ {{v}^{2}}=0+2\times 9.8\times 45 $$
$$ {{v}^{2}}=882\,m/s $$
$$ v=29.7\,m/s $$
Hence, the minimum speed is $$29.7\ m/s$$
It is given that, the body reaches the maximum height in 6s. Let u be the initial velocity. At maximum height the velocity is zero. Using the equation of motion as
$$ 0=u-(10)(6) $$
$$ u=60\,m/s $$
Distance travelled in nth second is given by:
$${{S}_{n}}=u+\left( \dfrac{a}{2} \right)\left( 2n-1 \right)$$
Displacement in 1st second is $${{S}_{1}}=60-\left( \dfrac{10}{2} \right)(2-1)=55\,m$$
Displacement in 7th second is $${{S}_{2}}=60-\left( \dfrac{10}{2} \right)(14-1)=-5\,m$$
So, $$\dfrac{{{S}_{1}}}{{{S}_{2}}}=\dfrac{55}{5}=\dfrac{11}{1}$$
The ratio is $$11:1$$.
Please disable the adBlock and continue. Thank you.