CBSE Questions for Class 11 Engineering Physics Oscillations Quiz 16 - MCQExams.com

The total spring constant of the system as shown in the figure will be:
1512088_a10d842fa49d453eb42553090e257ca4.PNG
  • $$\dfrac{k_1}{2} + k_2$$
  • $${[\dfrac{1}{2k_1}+\dfrac{1}{k_2}]}^{-1}$$
  • $$\dfrac{1}{2k_1} + \dfrac{1}{k_2}$$
  • $${[\dfrac{2}{k_1}+\dfrac{1}{k_2}]}^{-1}$$
A particles moves on the x-axis according to the equation $${ x=x }_{ 0 }{ sin }^{ 2 }\omega t$$. The motion is simple harmonic 
  • With amplitude $${ x }_{ 0 }$$
  • With amplitude $${ 2x }_{ 0 }$$
  • With time period $$\dfrac { 2\pi }{ \omega } $$
  • With time period $$\dfrac { \pi }{ \omega } $$
A particle moves in x-y plane according to the equation $$\overrightarrow {r  }   =(\hat { i } +2\hat { j })$$ $$A\, cos \,\omega t$$. The motion of the particle is 
  • simple harmonic
  • uniformly accelerated
  • circular motion
  • projectile motion
A particle executes SHM in accordance with x = A sin $$\omega t.$$ If $${ t }_{ 1 }$$ is the time taken by it to reach from x = 0 to x = $$\sqrt { 3 } (A/2)$$ and $${ t }_{ 2 }$$ is the time taken by it to reach from x = $$\left( \sqrt { 3 } /2 \right) A$$ to x = A the value of $${ t }_{ 1 }/{ t }_{ 2 }$$ is 
  • 2
  • $$\dfrac { 1 }{ 2 } $$
  • 3
  • $$\dfrac { 1 }{ 3 } $$
Equation of SHM is $$x=10\sin{10\pi t}$$. Find the distance between the two points where speed is $$50\pi$$ $$cm/sec$$. $$x$$ is in cm and $$t$$ is in seconds
  • $$10cm$$
  • $$20cm$$
  • $$17.32cm$$
  • $$5(\sqrt{3}+1) cm$$
The value of phase at   maximum displacement from  the mean position  of a particle in S.H.M. is 
  • $$\pi /2$$
  • $$\pi $$
  • Zero
  • $$2\pi $$
On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is not correct?
  • $$ Y = a sin 2 \pi t/ T - cos 2 \pi t / T $$
  • Y = a sin Vt
  • $$ y = \dfrac {a}{T} sin \left( \dfrac { Kt }{ a } \right) $$
  • $$ Y\quad =\quad a\sqrt { 2 } \left( sin\dfrac { 2\pi t }{ T } -cos\dfrac { 2\pi t }{ T } \right) $$
A block of mass $$1 kg$$ is connected with a massless spring of force constant $$100 N/m$$. At $$t=0$$, a constant force $$F=10 N$$ is applied on the block. The spring is in its natural length at $$t=0$$. The speed of particle at $$x=6cm$$ from mean position is:
1702464_aaaefad632b94413803dab4a9ac13805.png
  • $$4 cm/s$$
  • $$10 cm/s$$
  • $$80 cm/s$$
  • $$50 cm/s$$
The period of oscillation of a simple pendulum of length $$L$$, suspended from the roof of a vehicle which moves without friction down an inclined plane of inclination $$\alpha$$, is given by:
  • $$2\pi\sqrt{\left(\dfrac{L}{g\cos \alpha}\right)}$$
  • $$2\pi\sqrt{\left(\dfrac{L}{g\sin\alpha}\right)}$$
  • $$2\pi\sqrt{\left(\dfrac{L}{g}\right)}$$
  • $$2\pi\sqrt{\left(\dfrac{L}{g\tan\alpha}\right)}$$
The equation of an SHM with amplitude $$A$$ and angular frequency $$\omega$$ in which all the distances are measured from one extreme position and time is taken to be zero at the other extreme position is
  • $$x = A \sin \omega t$$
  • $$x = A (\cos \omega t + \sin \omega t)$$
  • $$x = A - A \cos \omega t$$
  • $$x = A + A \cos \omega t$$
A particle executing SHM has max acceleration $$ 50 cm/s^2 $$ , The time period of oscillation of 2 sec and initial displacement 2.5 cm from the equilibrium position.The equation of SHM is $$ (take\ \pi^2 = 10) $$
  • $$ X = 2.5 sin \left( \pi t + \frac { \pi }{ 6 } \right) cm $$
  • $$ X = 5 sin \left( \frac { \pi t }{ 2 } +\frac { \pi }{ 3 } \right) cm $$
  • $$ X = 5 sin \left( \pi t+\frac { \pi }{ 3 } \right) cm$$
  • $$X = 5 sin \left( \pi t+\frac { \pi }{ 6 } \right) cm $$
Potential energy of a particle of mass is given by $$U\quad =-\quad { U }_{ 0 }\left( 1-\cos {a x }  \right) .$$ which of the following can be a possible expression for its time period 
  • $$2\pi \sqrt { \frac { m }{ { a }^{ 2 }{ u }_{ 0 } } } $$
  • $$2\pi \sqrt { \frac { m }{ { a }{ u }_{ 0 } } } $$
  • $$2\pi \sqrt { \frac { ma }{ { U }_{ 0 } } } $$
  • $$2\pi \sqrt { \frac { { mu }_{ 0 } }{ a } } $$
Between the plates of the capacitor with potential difference $$V$$ across its plate such that upper plate is $$-ve$$, a ball with positive charge '$$q$$' and mass '$$m$$' is suspended by a thread of length '$$l$$'. If the electrostatic force acting on a ball is less than the gravitational force, what should be the period of the ball?
1702505_f52a9da963d54dba87ccb668a8034573.png
  • $$T=2\pi\sqrt{\left(\dfrac{l}{g}\right)}$$
  • $$2\pi\sqrt{\left[\dfrac{1}{\left(g+\dfrac{qE}{m}\right)}\right]}$$
  • $$T=2\pi\sqrt{\left[\dfrac{1}{\left(g-\dfrac{qE}{m}\right)}\right]}$$
  • $$2\pi\sqrt{\left(\dfrac{lm}{gE}\right)}$$
A particle of mass m moves in  a one-dimensional potential energy $$ U(x) = -ax^2 +bx^4 $$, where a and 'b' are positive constants. the angular frequency of small oscillation about the minima of the potential energy is equal to
  • $$ \pi \sqrt \frac {a}{2b} $$
  • $$ 2 \sqrt \frac {a}{m} $$
  • $$ \sqrt \frac {2a}{m} $$
  • $$ \sqrt \frac {a}{2m} $$
A particle of mass $$1\ kg$$ is moving where potential energy varies as displacement $$U=10(1-\cos 2x)$$ then:
  • time period for $$S.H.M.$$ is $$2\pi\sqrt{\dfrac{1}{20}}$$
  • speed of particle is maximum at $$x=0$$
  • amplitude of oscillation is $$\dfrac{\pi}{4}$$
  • time period for $$S.H.M.$$ is $$2\pi\sqrt{\dfrac{1}{40}}$$
A particle of mass $$2\ kg$$ is moving on a straight line under the action of force $$F=(8-2x)N$$. The particle is released at rest from $$x=6\ m$$. For the subsequent motion select the correct options:
  • equilibrium position at $$x=4$$
  • amplitude $$=2\ m$$
  • time to go from $$x=2\ m$$ to $$4\ m $$  is  $$ \pi/2$$
  • energy of S.H.M. $$=4\ J$$
A block of mass $$m$$ is pushed against a spring whose spring constant is $$k$$ fixed at one end with a wall. The block can slide on a frictionless table as shown in figure. If the natural length of spring is $$L_0$$ and it is compressed to half its length when the block is released, find the velocity of the block, when the spring has natural length.
1744138_ef7694f29c304c1980dd75563667eb38.png
  • $$\sqrt{\dfrac{m}{k_0}}.\dfrac{L_0}{2}$$
  • $$\sqrt{\dfrac{3k_0}{m}}.\dfrac{L_0}{2}$$
  • $$\sqrt{\dfrac{k_0}{m}}.L$$
  • $$\sqrt{\dfrac{k_0L}{m}}$$
A ball is hung vertically by a thread of length $$l$$ from a point $$P$$ of an inclined wall that makes an angle $$\beta$$ with the vertical. The thread with the ball is then deviated through a small angle $$\alpha(\alpha >\beta)$$ and set free. Assuming the wall to be perfectly elastic, the period of such pendulum is:
1743929_dc413bbda9034d5b84d789d1eba77e52.png
  • $$2\sqrt{\dfrac{l}{g}}\left[\sin^{-1}\left(\dfrac{\beta}{\alpha}\right)\right]$$
  • $$2\sqrt{\dfrac{l}{g}}\left[\dfrac{\pi}{2}+\sin^{-1}\left(\dfrac{\beta}{\alpha}\right)\right]$$
  • $$2\sqrt{\dfrac{l}{g}}\left[\cos^{-1}\left(\dfrac{\alpha}{\beta}\right)\right]$$
  • $$2\sqrt{\dfrac{l}{g}}\left[\cos^{-1}\left(-\dfrac{\beta}{\alpha}\right)\right]$$
The new angular frequency of the system will be:
  • $$10\ rad/sec$$
  • $$15\ rad/sec$$
  • $$20\ rad/sec$$
  • $$none\ of\ these$$
If an impulse $$J$$ is applied at the centre of oscillation in the plane of oscillation, then angular velocity of the rod will be
  • $$\dfrac{4J}{ML}$$
  • $$\dfrac{2J}{ML}$$
  • $$\dfrac{3J}{2ML}$$
  • $$\dfrac{J}{ML}$$
The amplitude of oscillation is
  • $$\dfrac{3}{2\pi}m$$
  • $$3\ m$$
  • $$\dfrac{1}{\pi}m$$
  • $$1.5\ m$$$
A spring balance has a scale that can read from $$0$$ to $$50\ kg$$ . The length of the scale is $$20\ cm$$. A body suspended from this balance when displaced and released oscillates harmonically with a time period of $$0.6\ s$$. The mass of the body is ( take $$g=10\ m/s^2)$$
  • $$10\ kg$$
  • $$25\ kg$$
  • $$18\ kg$$
  • $$22.8\ kg$$
For the above question locate the centre of oscillation.
  • $$\dfrac{L}{4}$$ from $$O$$ (down)
  • $$\dfrac{L}{4}$$ from $$O$$ (up)
  • $$\dfrac{2L}{3}$$ from $$O$$ (down)
  • $$\dfrac{7L}{12}$$ from $$O$$ (down)
New equation for position of the combined body is
  • $$(10+3\sin 5t)\ cm$$
  • $$(10-3\sin 5t)\ cm$$
  • $$(10+3\cos 10t)\ cm$$
  • $$(10-3\cos 10t)\ cm$$
New amplitude of oscillation is
  • $$3\ cm$$
  • $$20\ cm$$
  • $$10\ cm$$
  • $$100\ cm$$
A particle performs simple harmonic motion with amplitude $$A$$ and time period $$T$$. The mean velocity of the particle over the time in interval which it travels a distance of $$A/2$$ starting from executing position is 
  • $$\dfrac{A}{T}$$
  • $$\dfrac{2A}{T}$$
  • $$\dfrac{3A}{T}$$
  • $$\dfrac{A}{2T}$$
Mark out the correct statement(s).
  • The block-bullet system performs $$SHM$$ about $$y=mg/k$$
  • The block-bullet system performs oscillatory motion but not $$SHM$$ about $$y=mg/k$$.
  • The block-bullet system perform $$SHM$$ about $$y=4\ mg/3k$$.
  • The block bullet system performs oscillatory motion but not $$SHM$$ about $$y=4\ mg/3k$$
Determine the velocity of particle at $$t=5\ s$$
  • $$-0.4\ m/s$$
  • $$0.5\ m/s$$
  • $$-0.25\ m/s$$
  • $$none\ of\ these$$
A particle executing harmonic motion is having velocities $$v_1$$ and $$v_2$$ at distances in $$x_1$$ and $$x_2$$ from the equilibrium position. The amplitude of the motion is 
  • $$\sqrt{\dfrac{v_1^2x_2-v_2^2x_1}{v_1^2+v_2^2}}$$
  • $$\sqrt{\dfrac{v_1^2x_1^2-v_2^2x_2^2}{v_1^2+v_2^2}}$$
  • $$\sqrt{\dfrac{v_1^2x_2^2-v_2^2x_1^2}{v_1^2-v_2^2}}$$
  • $$\sqrt{\dfrac{v_1^2x_2^2+v_2^2x_1^2}{v_1^2+v_2^2}}$$
The velocity of the particle when it reaches $$B$$ will be
  • zero
  • $$3\sqrt{gl}$$
  • $$2\sqrt{gl}$$
  • $$\sqrt{gl}$$
Motion of an oscillating liquid column in a U-tube is 
  • Periodic but not simple harmonic.
  • non-periodic.
  • Simple harmonic and time period is independent of the density of the liquid.
  • Simple harmonic and time-period is directly proportional to the density of the liquid.
A particle doing simple harmonic motion, amplitude $$= 4\ cm$$, time period $$= 12\ sec$$. The ratio between time taken by it in going from its mean position to $$2\ cm$$ and from $$2\ cm$$ to extreme position is
  • $$1$$
  • $$1/3$$
  • $$1/4$$
  • $$1/2$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Physics Quiz Questions and Answers