Explanation
$$v_{max}=A\omega = 0.866\dfrac{m}{s}$$At $$x=\dfrac{A}{2} ; v=\omega \sqrt{A^{2}-x^{2}}$$$$v=\dfrac{\sqrt{3}}{2}\omega A=\dfrac{\sqrt{3}}{2}v_{max}$$$$v=\dfrac{\sqrt{3}}{2}\times 0.866=0.75\dfrac{m}{s}$$
for a parallel combination $$k=k_{1}+k_{2}$$$$T=2\pi \sqrt{\dfrac{m}{k}}$$
$$=2\pi \sqrt{\dfrac{m}{(k_{1}+k_{2})}}$$
$$T_{1}=2\pi \sqrt{\dfrac{m}{k_{1}}}$$
$$\Rightarrow k_{1}=(2\pi )^{2}\dfrac{m}{T_{1}^{2}}$$
$$k_{2}=(2\pi )^{2}\dfrac{m}{T_{2}^{2}}$$
$$k_{1}+k_{2}=(2\pi )^{2}(\dfrac{m}{T_{1}^{2}}+\dfrac{m}{T_{2}^{2}})$$
$$\therefore \dfrac{T_{1}T_{2}}{\sqrt{T_{1}+T_{2}}}=T$$
$$v_{max}=15\ cm /s ; T=0.628\ s=\dfrac{2\pi}{10}s$$$$\omega =\dfrac{2\pi }{T}=10\ rad/s$$$$v_{max}=A\omega $$$$A=1.5\ cm$$
$$V=\omega\sqrt{A^{2}-x^{2}}$$
$$V_{1}=\omega \sqrt{A^{2}-x^{2}}$$
$$V_{1}=\omega \sqrt{A^{2}-(0.6)^{2}}$$
$$V_{2}=\omega \sqrt{A^{2}-x^{2}}$$
$$V_{2}=\omega \sqrt{A^{2}-(0.8)^{2}}$$
$$\dfrac{V_{1}}{V_{2}}=\dfrac{\sqrt{(1^{2}-(0.6)^{2}}}{\sqrt{(1^{2}-(0.8)^{2}}}$$
$$\dfrac{4}{V_{2}}=\dfrac{0.8}{0.6}$$
$$V_{2}=3 \ cm / sec$$
$$x=4 sin(80t +\dfrac{\pi }{2})$$$$\omega _{1}=80 ;\dfrac{2\pi}{T_{1}}=80 ; T_{1}=\dfrac{\pi}{40}$$sec$$y=2 cos(60t + \dfrac{\pi }{3})$$$$\omega _{2}=60 ; \dfrac{2\pi }{T_{2}}=60 ; T_{2}=\dfrac{\pi}{30}sec$$$$\dfrac{T_{1}}{T_{2}}=\dfrac{3}{4}$$
Let y is the displacement $$y=a\sin \omega t$$
$$\omega =\dfrac{2\pi }{T}$$
It is given that,
Displacement y = 1
Amplitude a = 2
So $$1=3\sin \dfrac{2\pi t}{T}$$
Since, acceleration in SHM is $$a={{\omega }^{2}}y$$
And velocity in SHM is $$v=\omega \sqrt{{{a}^{2}}-{{y}^{2}}}....(1)$$
$$\because v=\omega $$
Put all the values in equation (1)
$$ \dfrac{4{{\pi }^{2}}}{{{T}^{2}}}=\dfrac{2\pi }{T}\left( \sqrt{{{a}^{2}}-1} \right) $$
$$ \dfrac{2\pi }{T}=\left( \sqrt{3} \right) $$
$$ T=\dfrac{2\pi }{\sqrt{3}} $$
Please disable the adBlock and continue. Thank you.