Explanation
vmax=Aω=0.866msAt x=A2;v=ω√A2−x2v=√32ωA=√32vmaxv=√32×0.866=0.75ms
for a parallel combination k=k1+k2T=2π√mk
=2π√m(k1+k2)
T1=2π√mk1
⇒k1=(2π)2mT21
k2=(2π)2mT22
k1+k2=(2π)2(mT21+mT22)
∴
v_{max}=15\ cm /s ; T=0.628\ s=\dfrac{2\pi}{10}s\omega =\dfrac{2\pi }{T}=10\ rad/sv_{max}=A\omega A=1.5\ cm
V=\omega\sqrt{A^{2}-x^{2}}
V_{1}=\omega \sqrt{A^{2}-x^{2}}
V_{1}=\omega \sqrt{A^{2}-(0.6)^{2}}
V_{2}=\omega \sqrt{A^{2}-x^{2}}
V_{2}=\omega \sqrt{A^{2}-(0.8)^{2}}
\dfrac{V_{1}}{V_{2}}=\dfrac{\sqrt{(1^{2}-(0.6)^{2}}}{\sqrt{(1^{2}-(0.8)^{2}}}
\dfrac{4}{V_{2}}=\dfrac{0.8}{0.6}
V_{2}=3 \ cm / sec
x=4 sin(80t +\dfrac{\pi }{2})\omega _{1}=80 ;\dfrac{2\pi}{T_{1}}=80 ; T_{1}=\dfrac{\pi }{40}secy=2 cos(60t + \dfrac{\pi }{3})\omega _{2}=60 ; \dfrac{2\pi }{T_{2}}=60 ; T_{2}=\dfrac{\pi }{30}sec\dfrac{T_{1}}{T_{2}}=\dfrac{3}{4}
Let y is the displacement y=a\sin \omega t
\omega =\dfrac{2\pi }{T}
It is given that,
Displacement y = 1
Amplitude a = 2
So 1=3\sin \dfrac{2\pi t}{T}
Since, acceleration in SHM is a={{\omega }^{2}}y
And velocity in SHM is v=\omega \sqrt{{{a}^{2}}-{{y}^{2}}}....(1)
\because v=\omega
Put all the values in equation (1)
\dfrac{4{{\pi }^{2}}}{{{T}^{2}}}=\dfrac{2\pi }{T}\left( \sqrt{{{a}^{2}}-1} \right)
\dfrac{2\pi }{T}=\left( \sqrt{3} \right)
T=\dfrac{2\pi }{\sqrt{3}}
Please disable the adBlock and continue. Thank you.