Explanation
let us assume initial Temperature $$T_1=T$$ then final will be
$$T_2=\dfrac{50}{100}T+T=\dfrac{150}{100}T=\dfrac{15}{10}T$$
energy radiated
$$e_1=\sigma A T_1^4\quad \left(1\right)$$
$$e_2=\sigma A T_2^4\quad \left(2\right)$$
$$\%$$ increase in radiation
$$=\dfrac{e_2-e_1}{e_1}\times 100$$
$$=\dfrac{\sigma A T_2^4-\sigma A T_1^4}{\sigma A T_1^4}\times 100$$
$$\dfrac{\left(\dfrac{15}{10}T\right)^4-T^4}{T^4}\times 100$$
$$\dfrac{15^4-10^4}{10^4}\times 10^2$$
$$\dfrac{50625-10000}{10^2}$$
$$=406.25$$
$$\approx 400\%$$
Please disable the adBlock and continue. Thank you.