Explanation
The Sun’s diameter (d) = {1.494\times {{10}^{11}}m}
And Sun’s angular diameter (\alpha ) = 1920''
To convert the angular diameter into radians, converting 1920''into radians.
1''=4.85\times {{10}^{-6}}rad
⸫ 1920''= 1920\times 4.85\times {{10}^{-6}}=9.31\times {{10}^{-3}}rad= \alpha
Now, Sun’s diameter (D) = \alpha \times d
D = (9.31\times {{10}^{-3}}\times 1.494\times {{10}^{11}})m
⸫ D = 1.39\times {{10}^{9}}m
\textbf{Answer:}
\textbf{Hence, the correct option is (a)} 1.39\times {{10}^{9}}m
Hint: While rounding off measurements, we use the following rules by convention:
Step 1: finding the rounded off digits
Let us round off 2.745 to 3 significant figures.
Here the digit to be dropped is 5, then the preceding digit is left unchanged because it is even.
Hence on rounding off 2.745, it would be 2.74.
Now consider 2.737, here also the digit to be dropped is 5, then the preceding digit is raised by one if it is odd.
Hence on rounding off 2.735 to 3 significant figures, it would be 2.74.
Correct option is (B) \left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]
Hint: Electric flux is the measure of the electric field lines crossing the surface.
Step1: Electric flux \phi=\int \vec{E} \cdot \vec{s}
The dimension of \phi= dimension fo \mathrm{E} \times dimension of \mathrm{s}
[\phi]=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right][\mathrm{AT}]^{-1}\left[\mathrm{~L}^{2}\right]=\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]
Dimensional formula of:
E : [ML^{2}T^{-2}]\\
J : [ML^{2}T^{-1}]\\
G : [M^{-1}L^{3}T^{-2}]\\
Thus
(E J ^{2})/(M^{5} G^{2}) = \dfrac{[ML^{2}T^{-2}][ML^{2}T^{-1}]^{2}}{M^{5} \times [M^{-1}L^{3}T^{-2}]^{2}} \\
= \dfrac{[M^{3}L^{6}T^{-4}]}{[M^{3}L^{6}T^{-4}]}\\
= [M^{0} L^{0} T^{0}]
The above quantity is dimensionless. Angle is also a dimensionless quantity while others are having some dimensions.
Thus the correct option is D.
Please disable the adBlock and continue. Thank you.