The dimension of $$ \cfrac {1}{2}\epsilon_o E^2$$ permittivity of free space and E:Intensity of electric field) is
Explanation
$$Force=P^xV^yT^z$$
$$[MLT^{-2}]=[MLT^{-2}L^{-2}]^x[LT^{-1}]^y[T]^z$$
Comparing the dimensions on both side, we get,
$$x=1$$, $$y=2$$, $$z=2$$
So, $$Force=[P^1V^2T^2]$$
$$Pressure (P) = \dfrac{Force }{ Area}$$ . . . . . (1)
Since, $$Force = Mass \times Acceleration$$
And, $$Acceleration = \dfrac{Velocity}{Time} =\dfrac{[LT^{-1}]}{[T]}=[LT^{-2}]$$
$$\therefore$$ The dimensional formula of force $$=[M][LT^{-2}]=[MLT^{-2}]$$ . . . . (2)
The dimensional formula of area is $$[M^0L^2T^0]$$ . . . . (3)
On substituting equation (2) and (3) in equation (1) we get,
$$Pressure (P) = \dfrac{Force }{ Area}$$
Or,
$$P=\dfrac{[MLT^{-2}]}{[L^2]}=ML^{-1}T^{-2}$$
Therefore, the pressure is dimensionally represented as $$[ML^{-1}T^{-2}]$$
Please disable the adBlock and continue. Thank you.