Explanation
In equilibrium, when sliding stops
N=mgcosθ…(1)N=mgcosθ…(1)
And f=mgsinθ=μN…(1)f=mgsinθ=μN…(1)
Dividing (2)(2) by(1)⇒μ=tanθ=0.75=34⇒θ=37°(1)⇒μ=tanθ=0.75=34⇒θ=37°
For downward direction
Force equation in perpendicular direction is given as
N=mgcosθN=mgcosθ
f′=μmgcosθf′=μmgcosθ
Force equation parallel to incline is
f+f′=mgsinθf+f′=mgsinθ
f+μmgcosθ=mgsinθf+μmgcosθ=mgsinθ
f=mgsinθ−μmgcosθ..............(1)f=mgsinθ−μmgcosθ..............(1)
For upward direction
f′=μNf′=μN
2f=mgsinθ+f′2f=mgsinθ+f′
2f=mgsinθ+μmgcosθ............(2)2f=mgsinθ+μmgcosθ............(2)
From equation (1),equation (2) becomes
2mgsinθ−2μmgcosθ=mgsinθ+μmgcosθ2mgsinθ−2μmgcosθ=mgsinθ+μmgcosθ
mgsinθ=3μmgcosθmgsinθ=3μmgcosθ
tanθ=3μtanθ=3μ
μ=tanθ3μ=tanθ3
Tmax=mv2maxr+mgTmax=mv2maxr+mg
where TmaxTmax is maximum tension
mm is mass
xx is radius
and gg is acceleration due to gravity
Tmax=mw2maxr+mgTmax=mw2maxr+mg
where w=vrw=vr is angular velocity
Tmaxm=mw2maxr+gTmaxm=mw2maxr+g
300.5=w2max2+10⇒w2max=25⇒wmax=5rad/s300.5=w2max2+10⇒w2max=25⇒wmax=5rad/s
Please disable the adBlock and continue. Thank you.