Explanation
Angular frequency, ω=√km ⇒ 2πT=√km
⇒ k=m(2πT)2 where, T is time period.
Net Spring constant when two spring is connected in parallel.
k=k1+k2
⇒m(2πT)2=m(2πT1)2+m(2πT2)2
⇒1T2=1T12+1T22
Given that,
Amplitude = A
Time period = T
Average velocity in time period = \dfrac{T}{4}
The displacement equation of SHM
x=A\sin \omega t
We know that,
v=\dfrac{dx}{dt}
v=\dfrac{d\left( A\sin \omega t \right)}{dt}
v=A\omega \cos \omega t
Now, the average velocity is
<v{{>}_{0\to \dfrac{T}{4}}}=\dfrac{\int\limits_{0}^{\dfrac{T}{4}}{vdt}}{\int\limits_{0}^{\dfrac{T}{4}}{dt}}
<v>\,=\dfrac{\int\limits_{0}^{\frac{T}{4}}{A\omega \cos \omega t}}{\dfrac{T}{4}}
<v>=\dfrac{4A\omega }{T}\int\limits_{0}^{\frac{T}{4}}{\cos \omega tdt}
<v>=\dfrac{4A\omega }{T}\left[ \frac{\sin \omega t}{\omega } \right]_{0}^{\dfrac{T}{4}}
<v>=\dfrac{4A}{T}\left[ \sin \dfrac{2\pi }{T}\times \dfrac{T}{4}-0 \right]
<v>=\dfrac{4A}{T}
Hence, the average velocity is \dfrac{4A}{T}
Please disable the adBlock and continue. Thank you.