Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
MCQExams
0:0:3
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 11 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Applications Of Integrals
Quiz 11
The area bounded by the curves
y
=
log
x
,
y
=
log
|
x
|
,
y
=
|
log
x
|
and
y
=
|
log
|
x
|
|
Report Question
0%
4 sq. units
0%
6 sq. units
0%
10 sq. units
0%
None of these
Explanation
Required Area
=
2
∫
1
0
|
log
|
x
|
|
d
x
=
2
[
(
x
|
log
|
x
|
|
)
]
1
0
−
∫
1
0
(
−
1
x
)
x
d
x
=
2
[
(
1
−
0
)
+
(
x
)
1
0
]
=
4
units
Find the area bounded by
y
=
√
x
and
y
=
x
.
Report Question
0%
1
8
s
q
.
u
n
i
t
s
0%
1
4
s
q
.
u
n
i
t
s
0%
1
12
s
q
.
u
n
i
t
s
0%
1
6
s
q
.
u
n
i
t
s
The area of the figure bounded by
y
2
=
2
x
+
1
and
x
−
y
−
1
=
0
is:
Report Question
0%
2
/
3
0%
4
/
3
0%
8
/
3
0%
11
/
3
Explanation
From figure required area
−
∫
−
1
2
0
(
√
2
x
+
1
−
(
1
−
x
)
)
d
x
+
∫
4
−
1
2
(
√
2
x
+
1
−
(
1
−
x
)
)
d
x
=
[
1
2
(
2
x
+
1
)
3
2
3
2
−
x
+
x
2
2
]
−
1
2
0
+
[
1
2
(
2
x
+
1
)
3
2
3
2
−
x
+
x
2
2
]
4
−
1
2
=
11
3
The parabolas
y
2
=
4
x
and
x
2
=
4
y
divide the square region bounded by the lines
x
=
4
,
y
=
4
and the coordinate axes. If
S
1
,
S
2
,
S
3
are respectively the areas of these parts numbered from top to bottom;
S
1
:
S
2
:
S
3
is
Report Question
0%
1
:
2
:
3
0%
1
:
2
:
1
0%
1
:
1
:
1
0%
2
:
1
:
2
Explanation
Total area
=
4
×
4
=
16
sq. units
Area of
S
3
=
∫
4
0
x
2
4
d
x
=
16
3
=
S
1
∴
S
2
=
16
−
16
3
×
2
=
16
3
∴
S
1
:
S
2
:
S
3
is
1
:
1
:
1
Find the area of the region bounded by the curves
x
=
1
2
,
x
=
2
,
y
=
l
o
g
x
and
y
=
2
x
Report Question
0%
4
−
√
2
log
2
−
5
2
log
2
+
3
2
s
q
.
u
n
i
t
s
0%
4
+
√
2
log
2
−
3
2
log
2
+
5
2
s
q
.
u
n
i
t
s
0%
4
−
√
2
log
2
−
3
2
log
2
+
5
2
s
q
.
u
n
i
t
s
0%
4
+
√
2
log
2
−
5
2
log
2
+
3
2
s
q
.
u
n
i
t
s
Explanation
Therefore the required area
=
∫
2
1
2
(
2
x
−
log
x
)
d
x
=
[
2
x
log
2
−
(
x
log
x
−
x
)
]
2
1
2
=
4
−
√
2
log
2
−
5
2
log
2
+
3
2
The curve
f
(
x
)
=
A
x
2
+
B
x
+
C
passes through the point (1, 3) and line
4
x
+
y
=
8
is tangent to it at the point (2, 0). The area enclosed by
y
=
f
(
x
)
,
the tangent line and the y-axis is
Report Question
0%
4
3
0%
8
3
0%
16
3
0%
32
3
Explanation
Given curve is
y
=
f
(
x
)
=
A
x
2
+
B
x
+
C
.
.
.
.
.
.
.
.
.
(
i
)
It passes through
(
1
,
3
)
∴
3
=
A
+
B
+
C
.
.
.
.
.
.
.
.
.
.
(
i
i
)
Point
(
2
,
0
)
also lie on the curve
(
i
)
∴
0
=
4
A
+
2
B
+
C
.
.
.
.
.
.
.
.
.
(
i
i
i
)
−
C
=
4
A
+
2
B
from eq (ii)
3
=
A
+
B
−
4
A
−
2
B
B
=
3
(
1
−
A
)
.
.
.
.
.
.
.
.
(
v
)
Slope of tangent is
−
4
∴
−
4
=
4
A
+
B
.
.
.
.
.
.
.
.
.
(
i
v
)
∴
from
(
i
i
)
,
(
i
i
i
)
&
(
i
v
)
and
(
v
)
we get
A
=
−
1
,
B
=
0
,
C
=
4
Thus, the required curve is
y
=
−
x
2
+
4
Hence required area
=
area of
Δ
O
A
B
−
∫
2
0
(
−
x
2
+
4
)
d
x
=
8
−
(
−
8
3
+
8
)
=
8
3
For which of the following values of m is the area of the region bounded by the curve
y
=
x
−
x
2
and the line
y
=
m
x
equals to 9/2 ?
Report Question
0%
- 4
0%
- 2
0%
2
0%
4
Explanation
The two curves meet at
m
x
=
x
−
x
2
o
r
x
2
=
x
(
1
−
m
)
∴
x
=
0
,
1
−
m
∫
1
−
m
0
(
y
1
−
y
2
)
d
x
=
∫
1
−
m
0
(
x
−
x
2
−
m
x
)
d
x
=
[
(
1
−
m
)
x
2
2
−
x
3
3
]
1
−
m
0
9
2
if m < 1or
(
1
−
m
)
3
[
1
2
−
1
3
]
=
9
2
or
(
1
−
m
)
3
=
27
∴
m
=
−
2
But if m > 1 then 1 - m is negative then
[
(
1
−
m
)
x
2
2
−
x
3
3
]
0
1
−
m
=
9
2
−
(
1
−
m
)
3
(
1
2
−
1
3
)
=
9
2
∴
−
(
1
−
m
)
3
=
−
27
or
1
−
m
=
−
3
∴
m
=
4
The area bounded between the curve
y
=
tan
x
;
tangent drawn to it at
x
=
π
4
and
y
≥
0
is
Report Question
0%
1
4
(
log
e
4
−
1
)
0%
1
2
(
log
e
4
−
1
)
0%
1
2
(
log
e
4
+
1
)
0%
1
4
(
log
e
4
+
1
)
Explanation
y
=
tan
X
now slope(m) of the line is
d
y
d
x
(
x
=
π
4
)
=
sec
2
X
=
2
now in graph of
tan
X
when
x
=
π
4
,
y
=
1
so equation of line is
(
y
−
y
1
)
=
m
(
x
−
x
1
)
so equation of line is
y
=
2
x
+
1
−
π
2
now at
y
=
0
,
x
=
π
4
−
1
2
now
A
=
∫
π
4
0
(
tan
X
)
−
∫
π
4
(
π
4
−
1
2
)
(
y
=
2
x
+
1
−
π
2
)
A
=
ln
(
sec
X
)
−
[
x
2
−
π
x
2
+
x
]
now putting upper and lower limt,and on simplified the term, we will get
A
=
(
ln
4
−
1
)
4
The area bounded by
y
2
+
8
x
=
16
and
y
2
−
24
x
=
48
is
a
√
6
c
, then
a
+
c
=
Report Question
0%
30
0%
32
0%
35
0%
None
Explanation
The curve
y
2
+
8
x
=
16
and
y
2
−
24
x
=
48
cuts at
x
=
−
1
y
2
=
24
⇒
y
=
±
√
24
Required area
=
∫
√
24
−
√
24
(
x
1
−
x
2
)
d
y
=
∫
√
24
−
√
24
(
(
2
−
y
2
8
)
−
(
y
2
24
−
2
)
)
d
y
=
4
[
y
]
√
24
−
√
24
−
1
18
[
y
3
]
√
24
−
√
24
=
8
√
24
−
2
18
(
24
√
24
)
=
16
√
24
3
=
32
√
6
3
Area is given as
a
√
6
c
⇒
a
=
32
,
c
=
3
∴
a
+
c
=
32
+
3
=
35
Suppose
g
(
x
)
=
2
x
+
1
and
h
(
x
)
=
4
x
2
+
4
x
+
5
and
h
(
x
)
=
(
f
o
g
)
(
x
)
The area enclosed by the graph of the function
y
=
f
(
x
)
and the pair of tangents drawn to it from the origin is
Report Question
0%
8/3
0%
16/3
0%
32/3
0%
none
Explanation
g
(
x
)
=
2
x
+
1
and
h
(
x
)
=
4
x
2
+
4
x
+
5
=
(
2
x
+
1
)
2
+
4
=
g
(
x
)
2
+
4
h
(
x
)
=
(
f
o
g
)
(
x
)
f
(
x
)
=
x
2
+
4
Let the point where tangent touches the parabola be (x,y)=
(
x
,
x
2
+
4
)
Slope =
2
x
Equation of tangent
x
2
+
4
x
=
2
x
1
x
=
±
2
y
=
8
Area enclosed
=
2
(
1
2
4
×
8
−
∫
8
4
√
y
−
4
d
y
)
=
16
3
Consider two curves
C
1
:
y
=
1
x
and
C
2
:
y
=
l
n
x
on the xy plane Let
D
1
denotes the region surrounded by
C
1
,
C
2
and the line
x
=
1
and
D
2
denotes the region surrounded by
C
1
,
C
2
and the line
x
=
a
If
D
1
=
D
2
then the value of 'a':
Report Question
0%
e
2
0%
e
0%
e
−
1
0%
2
(
e
−
1
)
Explanation
Let the x point of intersection of the two curves be (k)
D
1
=
∫
k
1
(
1
x
−
ln
x
)
d
x
D
2
=
∫
a
k
(
−
1
x
ln
x
)
d
x
D
1
+
D
2
=
0
∫
a
1
(
1
x
d
x
=
∫
a
1
(
ln
x
)
d
x
ln
a
=
a
ln
a
−
a
+
1
(
ln
a
−
1
)
(
1
−
a
)
=
0
a
=
e
Suppose
y
=
f
(
x
)
and
y
=
g
(
x
)
are two functions whose graphs intersect at three points
(
0
,
4
)
,
(
2
,
2
)
and
(
4
,
0
)
with
f
(
x
)
>
g
(
x
)
for
0
<
x
<
2
and
f
(
x
)
<
g
(
x
)
for
2
<
x
<
4
. if
∫
4
0
(
f
(
x
)
−
g
(
x
)
)
d
x
=
10
and
∫
4
2
(
g
(
x
)
−
f
(
x
)
)
d
x
=
5
, the area between two curves for
0
<
x
<
2
, is:
Report Question
0%
5
0%
10
0%
15
0%
20
Explanation
f
(
x
)
>
g
(
x
)
for
0
<
x
<
2
and
f
(
x
)
<
g
(
x
)
for
2
<
x
<
4
.
if
∫
4
0
[
f
(
x
)
−
g
(
x
)
]
d
x
=
10
and
∫
4
2
[
g
(
x
)
−
f
(
x
)
)
]
d
x
=
5
,
∫
4
0
[
f
(
x
)
−
g
(
x
)
]
d
x
=
10
∫
2
0
f
(
x
)
−
g
(
x
)
d
x
+
∫
4
2
f
(
x
)
−
g
(
x
)
d
x
=
10
∫
2
0
(
f
(
x
)
−
g
(
x
)
)
d
x
+
∫
4
2
(
g
(
x
)
−
f
(
x
)
)
d
x
=
10
∫
2
0
(
f
(
x
)
−
g
(
x
)
)
d
x
=
15
The area bounded by the curves
y
=
−
√
−
x
and
x
=
−
√
−
y
were
x
,
y
≤
0
Report Question
0%
Can not be determined
0%
is 1/3
0%
is 2/3
0%
is same as that of the figure by the curves
y
=
√
−
x
;
x
≤
0
and
x
=
√
−
y
;
y
≤
0
Explanation
y
1
=
−
√
−
x
y
2
=
−
x
2
Area bound is given by,
=
∫
0
−
1
(
y
1
+
y
2
)
d
x
=
∫
0
−
1
(
−
√
−
x
+
x
2
)
d
x
=
[
−
x
3
/
2
3
/
2
+
x
3
3
]
0
−
1
=
(
0
−
0
)
−
(
−
2
3
+
1
3
)
=
1
3
The area of the figure bounded by
y
2
=
2
x
+
1
and
x
−
y
−
1
=
0
is
Report Question
0%
16
3
0%
8
3
0%
4
3
0%
None of these
Explanation
Solving
y
2
=
2
x
+
1
and
x
−
y
−
1
=
0
we get
y
2
−
1
2
=
y
+
1
⇒
y
2
−
2
y
−
3
=
0
⇒
(
y
−
3
)
(
y
+
1
)
=
0
⇒
y
=
3
,
−
1
Area of strip is
=
∫
3
−
1
(
y
+
1
−
y
2
−
1
2
)
d
y
=
[
y
2
2
−
y
3
6
+
3
2
y
]
3
−
1
=
(
9
2
−
1
2
)
−
(
27
6
−
−
1
6
)
+
3
2
[
3
−
(
−
1
)
]
=
16
3
Area of the region enclosed between the curves
x
=
y
2
−
1
and
x
=
|
y
|
√
1
−
y
2
is
Report Question
0%
1
0%
4
/
3
0%
2
/
3
0%
2
Explanation
Required area is,
A
=
2
∫
1
0
[
y
√
1
−
y
2
−
(
y
2
−
1
)
]
d
y
=
(
−
2
3
(
1
−
y
2
)
3
/
2
)
1
0
−
(
2
y
3
3
−
2
y
)
1
0
=
2
The smaller area enclosed by
y
=
f
(
x
)
, where
f
(
x
)
is polynomial of least degree satisfying
[
lim
and the circle
x^2+y^2=2
above the
x-
axis is
Report Question
0%
\displaystyle\frac { \pi }{ 2 } +\frac { 3 }{ 5 }
0%
\displaystyle\frac { \pi }{ 2 } -\frac { 3 }{ 5 }
0%
\dfrac { \pi }{ 2 } -\dfrac { 6 }{ 5 }
0%
None of these
Explanation
Since
\displaystyle\lim _{ x\rightarrow 0 }{ { \left[ 1+\frac { f\left( x \right) }{ { x }^{ 3 } } \right] }^{ \tfrac { 1 }{ x } } }
exists, so
\displaystyle\lim _{ x\rightarrow 0 }{ \frac { f\left( x \right) }{ { x }^{ 3 } } } =0
\therefore f(x)={ a }_{ 4 }{ x }^{ 4 }+{ a }_{ 5 }{ x }^{ 5 }+...+{ a }_{ n }{ x }^{ n },a_n\neq 0,n\ge 4
Since,
f(x)
is of least degree
\Rightarrow f(x)={ a }_{ 4 }{ x }^{ 4 }
The graph of
y=x^4
and
x^2+y^2=2
are shown in the figure
\therefore
The required area
\displaystyle=2\int _{ 0 }^{ 1 }{ \left( \sqrt { 2-{ x }^{ 2 } } -{ x }^{ 4 } \right) } dx=\frac { \pi }{ 2 } +\frac { 3 }{ 5 }
The line
3x + 2y =13
divides the area enclosed by the curve
\displaystyle 9x^{2}+4y^{2}-18x-16y-11=0
in two parts Find the ratio of the larger area to the smaller area
Report Question
0%
\displaystyle \frac{3\pi+2}{\pi -2}
0%
\displaystyle \frac{3\pi-2}{\pi +2}
0%
\displaystyle \frac{\pi+2}{\pi -2}
0%
\displaystyle \frac{\pi-2}{\pi +2}
Explanation
9{ x }^{ 2 }+4{ y }^{ 2 }-18x-16y-11=0\Rightarrow 9\left( { x }^{ 2 }-2x \right) +4\left( { y }^{ 2 }-4y \right) =11\\ \Rightarrow 9\left( { \left( x-1 \right) }^{ 2 }-1 \right) +4\left( { \left( y-2 \right) }^{ 2 }-4 \right) =11\Rightarrow 9{ \left( x-1 \right) }^{ 2 }+4{ \left( y-2 \right) }^{ 2 }=36
\displaystyle \\ \Rightarrow \dfrac { { \left( x-1 \right) }^{ 2 } }{ 4 } +\dfrac { { \left( y-2 \right) }^{ 2 } }{ 9 } =1
Let
x-1=X
and
y-2=Y
\displaystyle \Rightarrow \frac { { X }^{ 2 } }{ 4 } +\frac { { Y }^{ 2 } }{ 9 } =1
Hence
3x+2y=13
\displaystyle \Rightarrow 3\left( X+1 \right) +2\left( Y-2 \right) =13\Rightarrow 3X+2Y=6\Rightarrow \frac { X }{ 2 } +\frac { Y }{ 3 } =1
Therefore area of triangle
\displaystyle OPQ=\frac { 1 }{ 2 } \times 2\times 3=3
Also area of ellipse
=\pi
(semimajor axes)(semi minor axis)
=\pi .3.2=6\pi
\displaystyle { A }_{ 1 }=\frac { 6\pi }{ 4 } -
area of
\displaystyle \triangle OPQ=\frac { 3\pi }{ 2 } -3
\displaystyle { A }_{ 2 }=3\left( \frac { 6\pi }{ 4 } \right) +
area of
\displaystyle \triangle OPQ=\frac { 9\pi }{ 2 } +3
Hence
\displaystyle \dfrac { { A }_{ 2 } }{ { A }_{ 1 } } =\dfrac { \dfrac { 9\pi }{ 2 } +3 }{ \dfrac { 3\pi }{ 2 } -3 } =\dfrac { 3\pi +2 }{ \pi -2 }
If the area enclosed by the parabolas
\displaystyle y=a-x^{2}
and
\displaystyle y=x^{2}
is
\displaystyle 18\sqrt {2}
sq. units Find the value of 'a'
Report Question
0%
a = -9
0%
a= 6
0%
a =9
0%
a=-6
Explanation
For the point of intersection
x^{2}=a-x^{2}
2x^{2}=a
x=\pm\sqrt{\dfrac{a}{2}}
Hence the required area will be
=\int_{-\sqrt{\frac{a}{2}}} ^{\sqrt{\frac{a}{2}}} x^{2}-(a-x^{2}).dx
=\int_{-\sqrt{\frac{a}{2}}} ^{\sqrt{\frac{a}{2}}} 2x^{2}-a.dx
=2\int_{0} ^{\sqrt{\frac{a}{2}}} 2x^{2}-a.dx
=2[\dfrac{2x^{3}}{3}-ax]_{0} ^{\sqrt{\frac{a}{2}}}
=2[\dfrac{2.a\sqrt{a}}{6.\sqrt{2}}-\dfrac{a\sqrt{a}}{\sqrt{2}}]
=2[\dfrac{a\sqrt{a}}{3\sqrt{2}}-\dfrac{a\sqrt{a}}{\sqrt{2}}]
=18\sqrt{2}
|\dfrac{a\sqrt{a}}{3\sqrt{2}}-\dfrac{a\sqrt{a}}{\sqrt{2}}|=9\sqrt{2}
\dfrac{2a\sqrt{a}}{3\sqrt{2}}=9\sqrt{2}
a\sqrt{a}=27
a^{\frac{3}{2}}=3^{3}
a=3^{2}
Hence
a=9
.
The area enclosed between the curves
y=x^3
and
y=\sqrt{x}
is (in square units)
Report Question
0%
\displaystyle\frac{5}{3}
0%
\displaystyle\frac{5}{4}
0%
\displaystyle\frac{5}{12}
0%
\displaystyle\frac{12}{5}
Explanation
y=\sqrt { x }
or
{ y }^{ 2 }=x\left( y\ge 0 \right)
and
y={ x }^{ 3 }.
We get points of intersection
(0,0)
and
(1,1)
\therefore
Required area
\displaystyle =\int _{ 0 }^{ 1 }{ \left( \sqrt { x } -{ x }^{ 3 } \right) } dx
\displaystyle =\left[ \dfrac { { x }^{ \frac { 3 }{ 2 } } }{ \frac { 3 }{ 2 } } -\dfrac { { x }^{ 4 } }{ 4 } \right] _{ 0 }^{ 1 }=\dfrac{2}{3}-\dfrac{1}{4}=\dfrac { 5 }{ 12 }
sq. unit.
Find the area bounded by
\displaystyle y = \cos ^{-1}x,y=\sin ^{-1}x
and
y-
axis
Report Question
0%
\displaystyle \left ( 2-\sqrt{2} \right )
sq. units
0%
\displaystyle \left ( \sqrt{2}-{2} \right )
sq. units
0%
2 \sqrt{2}
sq. units
0%
\sqrt {2}
sq. units
Explanation
y=\cos ^{ -1 }{ x }
and
y=\sin ^{ -1 }{ x }
intersect at
P\equiv\displaystyle \left( \frac { 1 }{ \sqrt { 2 } } ,\frac { \pi }{ 4 } \right)
Hence, required area is,
\displaystyle \int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }{ \left( \cos ^{ -1 }{ x } -\sin ^{ -1 }{ x } \right) dx } =\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }{ \cos ^{ -1 }{ x } dx } -\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }{ \sin ^{ -1 }{ x } dx }
\displaystyle ={ \left[ x\cos ^{ -1 }{ x } \right] }_{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }-\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }{ x.\frac { -1 }{ \sqrt { 1-{ x }^{ 2 } } } dx } -{ \left[ x\sin ^{ -1 }{ x } \right] }_{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }+\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }{ x.\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } dx }
\displaystyle ={ \left[ \dfrac1{\sqrt2}\cos ^{ -1 }{\dfrac1{\sqrt2} } \right] } -{ \left[ \dfrac1{\sqrt2}\sin ^{ -1 }{ \dfrac1{\sqrt2} } \right] }+\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }{ 2x.\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } dx }
\displaystyle =\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 } } }{ 2x.\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } dx }
Assuming
1-x^2 = t^2
Differentiating both sides, we get
-2xdx = 2tdt
Substituting in the integral, we get
\displaystyle =\int _{ \frac { 1 }{ \sqrt { 2 } } }^12\ dt
=2-\sqrt { 2 }
Find the area enclosed between the curves
\displaystyle y=\log_{e}\left ( x+e \right ), x=\log_{e}\left ( 1/y \right )
& the x-axis
Report Question
0%
1 sq. units
0%
2 sq. units
0%
3 sq. units
0%
4 sq. units
Explanation
Area enclosed
= \int _{1-e} ^0 ln(x+e) dx + \int _{0} ^{\infty} e^{-x} dx
= (xln(x+e) -x)| _{1-e} ^0 -e^{-x} | _{0} ^{\infty}
=2
Find the value(s) of the parameter 'a' (a > 0) for each of which the area of the figure bounded by the straight line
\displaystyle y=\frac{a^{2}-ax}{1+a^{4}}
& the parabola
\displaystyle y=\frac{x^{2}+2ax+3a^{2}}{1+a^{4}}
is the greatest
Report Question
0%
\displaystyle a=2^{1/4}
0%
\displaystyle a=5^{1/4}
0%
\displaystyle a=7^{1/4}
0%
\displaystyle a=3^{1/4}
Explanation
\displaystyle A=\int_{-a}^{-2a}\frac{a^{2}-ax-\left ( x^{2}+2ax+3a^{2} \right )}{1+a^{4}}dx
\displaystyle =\frac{3}{2}\frac{a^{3}}{1+a^{4}}
Now f(a)
\displaystyle =\frac{3}{2}\frac{a^{3}}{1+a^{4}}\Rightarrow f'(a)=0\Rightarrow \left ( 1+a^{4} \right )3a^{2}-a^{3}4a^{3}=0
\displaystyle \Rightarrow a_{min}=0,\:\:a_{min}=3^{1/4}
Find the positive value of 'a' for the which the parabola
\displaystyle y=x^{2}+1
bisects the area of the rectangle with vertices
(0, 0), (a, 0), (0, \displaystyle a^{2}+1)
and
(a, \displaystyle a^{2}+1)
Report Question
0%
\displaystyle \sqrt 2
0%
\displaystyle \sqrt 3
0%
\displaystyle \sqrt 5
0%
\displaystyle \sqrt 7
Explanation
Area of the rectangle outside the parabola
= \int _0 ^{a} (x^2+1)dx
= \cfrac{a^3}{3} + a
Given it is equal to half the area of rectangle
\cfrac{a(a^2+1)}{2} = \cfrac{a^3}{3} + a
On solving
a = \sqrt{3}
A figure is bounded by the curves
\displaystyle y=\left | \sqrt{2}\sin \frac{\pi x}{4} \right |
y = 0, x = 2
&
x = 4
. At what angles to the positive
x
-axis straight lines must be drawn through
(4, 0)
, so that these lines divide the figure into three parts of the same size
Report Question
0%
\displaystyle \pi -\tan ^{-1}\frac{2\sqrt{2}}{3\pi },\pi +\tan^{-1} \frac{4\sqrt{2}}{3\pi }
0%
\displaystyle \pi -\tan ^{-1}\frac{2\sqrt{2}}{2\pi },\pi -\tan ^{-1}\frac{4\sqrt{2}}{2\pi }
0%
\displaystyle \pi -\tan ^{-1}\frac{2\sqrt{2}}{3\pi },\pi -\tan ^{-1}\frac{4\sqrt{2}}{3\pi }
0%
\displaystyle \pi +\tan ^{-1}\frac{2\sqrt{2}}{2\pi },\pi -\tan ^{-1}\frac{4\sqrt{2}}{2\pi }
Explanation
Let equation of line is
y = mx - 4m
\displaystyle A=\int_{2}^{4}\sqrt{2}\sin \frac{\pi }{4}x\ dx=\left [ -\sqrt{2}\frac{4}{\pi }\cos \frac{\pi x}{4} \right ]^{4}_{2}=\frac{4\sqrt{2}}{\pi }....(i)
Also area of
\displaystyle \Delta ABC=\frac{1}{2}.2.\left ( -2m_{1} \right )=-2m_{1}...(ii)
from (i) and (ii)
\displaystyle -2m_{1}=\frac{4\sqrt{2}}{3\pi }\Rightarrow m_{1}=\frac{-2\sqrt{2}}{3\pi }
\displaystyle \Rightarrow \tan \left ( \pi -\theta _{1} \right )=\frac{-2\sqrt{2}}{3\pi }\Rightarrow \pi -\theta _{1}=\tan ^{-1}\frac{2\sqrt{2}}{3\pi }
\displaystyle \Rightarrow \theta _{1}=\pi -\tan ^{-1}\frac{2\sqrt{2}}{3\pi }
or
\displaystyle \frac{1}{2}.(2)\left ( -2m_{2} \right )=\frac{8\sqrt{2}}{3\pi }
\displaystyle \Rightarrow m_{2}=\frac{-4\sqrt{2}}{3\pi }\Rightarrow \tan \left ( \pi -\theta _{2} \right )=\frac{-4\sqrt{2}}{3\pi }
\displaystyle \Rightarrow \theta _{2}=\pi -\tan ^{-1}\frac{4\sqrt{2}}{3\pi }
In what ratio does the x-axis divide the area of the region bounded by the parabolas
\displaystyle y=4x-x^{2}
and
\displaystyle y=x^{2}-x
?
Report Question
0%
4 : 121
0%
4 : 144
0%
4 : 169
0%
4 : 100
For what value of 'a' is the area of the figure bounded by
\displaystyle y=\frac{1}{x}, y=\frac{1}{2x-1}
x = 2
&
x = a
equal to
\displaystyle ln\frac{4}{\sqrt{5}}
?
Report Question
0%
\displaystyle a=4\:
0%
\displaystyle a=8\:
0%
\displaystyle a=4\: or \frac{2}{5}\left ( 6-\sqrt{21} \right )
0%
none of these
Explanation
The required area is
=\int_{2} ^{a} \dfrac{1}{x}-\dfrac{1}{2x-1}.dx
=[lnx-\dfrac{ln(2x-1)}{2}]_{2} ^{a}
=[ln\dfrac{x}{\sqrt{2x-1}}]_{2} ^{a}
=-ln\dfrac{(2)}{\sqrt{3}}+ln\dfrac{a}{\sqrt{2a-1}}
=ln\dfrac{4}{\sqrt{5}}
Hence
ln(\dfrac{a}{\sqrt{2a-1}})=ln\dfrac{4}{\sqrt{5}}+ln\dfrac{(2)}{\sqrt{3}}
\Rightarrow ln(\dfrac{a}{\sqrt{2a-1}})=ln\dfrac{8}{\sqrt{15}}
Hence
2a-1=15
Hence
a=8
.
Therefore a=8 is one solution.
Now
\dfrac{a^{2}}{2a-1}=\dfrac{64}{15}
\Rightarrow 15a^{2}=128a-64
\Rightarrow 15a^{2}-128a+64=0
Hence
a=8
and
a=\dfrac{8}{\sqrt{15}}
A polynomial function f(x) satisfies the condition
f(x + 1) = f(x) + 2x + 1
Find f(x) if
f(0) = 1
Find also the equations of the pair of tangents from the origin on the curve
y = f(x)
and compute the area enclosed by the curve and the pair of tangents
Report Question
0%
\displaystyle f(x)=x^{2}+1;y=\pm x; A=\frac{2}{3}sq. units
0%
\displaystyle f(x)=x^{2}+1;y=\pm x; A=\frac{4}{3}sq. units
0%
\displaystyle f(x)=x^{2}+1;y=\pm 2x; A=\frac{2}{3}sq. units
0%
\displaystyle f(x)=x^{2}+1;y=\pm 2x; A=\frac{4}{3}sq. units
Explanation
\displaystyle f\left ( x+1 \right )=f(x)+2x+1
\displaystyle \Rightarrow f''\left ( x+1 \right )=f''(x)\:\:\:\:\forall \times \in R
Let
f"(x) = a \displaystyle \Rightarrow
f'(x) = ax + b \displaystyle \Rightarrow f(x)=\frac{ax^{2}}{2}+bx+c\Rightarrow c=1
\displaystyle \left [ \because f(0)=1 \right ]
Now
f(x + 1) - f(x) = 2x + 1 \displaystyle \Rightarrow \left [ \frac{a}{2}\left ( x+1 \right )^{2}+b\left ( x+1 \right )+c \right ]-\left [ \frac{ax^{2}}{2}+bx+c \right ] =2x+1
\displaystyle \Rightarrow ax+\frac{a}{2}+b=2x+1
on comparing we get a = 2
or
\displaystyle \frac{a}{2}+b=1\Rightarrow b=0
\displaystyle \therefore f(x)=x^{2}+1.........(i)
Now let equation of tangent be
y = mx ....... (ii)
From (i) and (ii), we get
\displaystyle x^{2}-mx+1=0\Rightarrow m=\pm 2
\displaystyle \therefore tangents\:\:\: are\:\:\:y=2x \:or\:\:y=-2x
\displaystyle A=2\int_{0}^{1}\left ( x^{2}+1-2x \right )dx=\frac{2}{3}
Area enclosed between the curves
{ y }^{ 2 }=x
and
{ x }^{ 2 }=y
is equal to
Report Question
0%
\displaystyle 2\int _{ 0 }^{ 1 }{ \left( x-{ x }^{ 2 } \right) dx }
0%
\displaystyle \frac { 1 }{ 3 }
0%
area of region
\left\{ \left( x,y \right) :{ x }^{ 2 }\le y\le \left| x \right| \right\}
0%
\displaystyle \frac { 2 }{ 3 }
Explanation
The
\displaystyle { y }^{ 2 }=x
and
{ x }^{ 2 }=y
intersect each other at point
(0,0)
and
(1,1)
as shown below.
\therefore
required area is given by
\displaystyle A=\int _{ 0 }^{ 1 }{ \left( \sqrt { x } -{ x }^{ 2 } \right) } dx=2{ A }_{ 2 }
Where
{ A }_{ 2 }=
area between
y=x
and
y={x}^{2}
between
x=0
and
x=1=\left\{ \left( x,y \right) :{ x }^{ 2 }\le y\le \left| x \right| \right\}
\displaystyle =2\int _{ 0 }^{ 1 }{ \left( x-{ x }^{ 2 } \right) } dx=2\left[ \frac { { x }^{ 2 } }{ 2 } -\frac { { x }^{ 3 } }{ 3 } \right] _{ 0 }^{ 1 }
\displaystyle =2\left[ \frac { 1 }{ 2 } -\frac { 1 }{ 3 } \right] =\frac { 1 }{ 3 }
square units.
Let
f(x)
be a continuous function given by
\displaystyle f\left ( x \right )=2x
for
\displaystyle \left | x \right |\leq 1
for
\displaystyle f\left ( x \right )=x^{2}+ax+b
for
\displaystyle \left | x \right |> 1
. Find the area of the region in the third quadrant bounded by the curves
\displaystyle x=-2y^{2}
and
y = f(x)
lying on the left of the line
8x + 1 = 0
Report Question
0%
\dfrac{235}{192} ; a = 2 ; b = - 1
0%
\dfrac{235}{192} ; a = -1 ; b = 2
0%
\dfrac{257}{192} ; a = -1 ; b = 2
0%
\dfrac{257}{192} ; a = 2 ; b = - 1
Let
\displaystyle C_{1}
&
\displaystyle C_{2}
be two curves passing through the origin as shown in the figure A curve C is said to "bisect the area" the region between
\displaystyle C_{1}
&
\displaystyle C_{1}
if for each point P of C the two shaded regions A & B shown in the figure have equal areas Determine the upper curve
\displaystyle C_{2}
given that the bisecting curve C has the equation
\displaystyle y=x^{2}
& that the lower curve
\displaystyle C_{1}
has the equation
\displaystyle y=x^{2}/2
Report Question
0%
\displaystyle \left ( 16/9 \right )x^{2}
0%
\displaystyle \left ( 25/9 \right )x^{2}
0%
\displaystyle \left ( 25/16 \right )x^{2}
0%
\displaystyle \left ( 9/25 \right )x^{2}
Explanation
According to question
\displaystyle \int_{0}^{a^{2}}\left ( -f^{-1}\left ( y \right )+\sqrt{y} \right )\:\:dy=\int_{0}^{a}\left ( x^{2}-\frac{x^{2}}{2} \right )dx
\displaystyle \Rightarrow \left [ f^{-1}(a^{2})-a \right ]2a=-\frac{a^{2}}{2}\Rightarrow f^{-1}(a^{2})=\frac{3a}{4}\Rightarrow f\left ( \frac{3a}{4} \right )-a^{2}
or
\displaystyle f(x)=\frac {16}{9}x^{2}
Find the area bounded by
y = x + sinx
and its inverse between
x = 0
and
x = \displaystyle 2\pi
Report Question
0%
2
0%
4
0%
6
0%
8
Explanation
graph of
x+\sin x
and its inverse is shown in the figure which is symmetric with
y=x
let
f(x)=x+\sin x
from the figure it is clear that
A=\int _{ 0 }^{ 2\pi }{ \left( f\left( x \right) -f^{ -1 }\left( x \right) \right) dx } =4\int _{ 0 }^{ \pi }{ \left( f\left( x \right) -x \right) dx } =4\int _{ 0 }^{ \pi }{ \left( x+\sin { x } -x \right) dx } =8
The area of the region bounded by the parabola
y={x}^{2}-4x+5
and the straight line
y=x+1
is
Report Question
0%
\cfrac{1}{2}
0%
2
0%
3
0%
\cfrac{9}{2}
Explanation
Given equation of parabola is
y={x}^{2}-4x+5
\Rightarrow
y={(x-2)}^{2}+1
\Rightarrow
{(x-2)}^{2}=(y-1)....(i)
and equation of line is
y=x+1
\Rightarrow
x-y=-1.....)(ii)
On putting the value of
(y-1)
from eqs
(ii)
in
(i)
we get
{(x-2)}^{2}=x
\Rightarrow
{x}^{2}+4-4x=x
\Rightarrow
{x}^{2}-5x+4=0
\Rightarrow
{x}^{2}-4x-x+4=0
\Rightarrow
x(x-4)-1(x-4)=0
\Rightarrow
(x-1)(x-4)=0
or
x=1,4
then from is
(ii)
y=2,5
\therefore
Required area
=\displaystyle \int _{ 1 }^{ 4 }{ \left( -{ x }^{ 2 }+5x-4 \right) dx } ={ \left[ \cfrac { -{ x }^{ 3 } }{ 3 } +\cfrac { 5{ x }^{ 2 } }{ 2 } -4x \right] }_{ 1 }^{ 4 }
=\left[ -\cfrac { 64 }{ 3 } +40-16+\cfrac { 1 }{ 3 } -\cfrac { 5 }{ 2 } +4 \right]
=\left(-21-\cfrac { 5 }{ 2 } +28\right)=\cfrac { 9 }{ 2 }
Area bounded by
\displaystyle y=1-\ell { n }^{ 2 }x,x-
axis which is common with
\displaystyle x\ge 1
, is -
Report Question
0%
\displaystyle e-\frac { 5 }{ e }
0%
\displaystyle e-2
0%
\displaystyle 3
0%
\displaystyle 1
Explanation
\displaystyle A=\int _{ 1 }^{ e }{ \left( 1-\ell { n }^{ 2 }x \right) dx } =\left( e-1 \right) -\int _{ 1 }^{ e }{ 1.\ell { n }^{ 2 }xdx }
\displaystyle =e-1-\left[ [x\ell { n }^{ 2 }x{ ] }_{ 1 }^{ e }-\int _{ 1 }^{ e }{ x.2\ell nx.\frac { 1 }{ x } dx } \right]
\displaystyle =e-1-\left[ e-0-2.[x\ell nx-x{ ] }_{ 1 }^{ e } \right]
\displaystyle =e-1-e+2\left[ e-e-0+1 \right]
=1
Area bounded by
\displaystyle y=2x-{ x }^{ 2 }
&
\displaystyle (x-1{ ) }^{ 2 }+{ y }^{ 2 }=1
in first quadrant, is:
Report Question
0%
\displaystyle \frac { \pi }{ 2 } -\frac { 4 }{ 3 }
0%
\displaystyle \frac { \pi }{ 2 } -\frac { 2 }{ 3 }
0%
\displaystyle \frac { \pi }{ 2 } +\frac { 4 }{ 3 }
0%
\displaystyle \frac { \pi }{ 2 } +\frac { 2 }{ 3 }
Explanation
Area of circle is
\pi r^2
But here only half circle is in
1^{st}
quadrant
Then,
A^*=\dfrac{\pi r^2}{2}
.......
( r=1)
\Rightarrow A^{*}=\dfrac{\pi}{2} ......(1)
Now area bounded by parabola
y=2x-x^2
is
A^@=\displaystyle \int_{0}^{2}(2x-x^2)
A=\dfrac{4}{3} ......(2)
Now area bounded by both curves is
A=A^*-A^@
\Rightarrow A=\dfrac{\pi}{2}-\dfrac{4}{3}
The area of the region bounded by the curves
x^{2} + y^{2} = 8
and
y^{2} = 2x
is
Report Question
0%
2\pi + \dfrac {1}{3}
0%
\pi + \dfrac {1}{3}
0%
2\pi + \dfrac {4}{3}
0%
\pi + \dfrac {4}{3}
Explanation
Given curves,
x^{2} + y^{2} = 8
.....(i)
and
y^{2} = 2x
.....(ii)
On solving Eqs. (i) and (ii), we get
x^{2} + 2x - 8 = 0
x^{2} + 4x - 2x - 8 = 0
x (x - 4) - 2 (x + 4) = 0
(x- 2) (x +4) = 0
\therefore x = 2
and
y = \pm 2
\therefore
Required area
= 2[\text {Area of OAP} + \text {Area of PAB}]
= 2\left [\displaystyle\int_{0}^{2} \sqrt {2x} dx + \int_{2}^{2\sqrt {2}} \sqrt {8 - x^{2}} dx \right ]
= 2\left [\sqrt {2} \left (x^{3/2} \cdot \dfrac {2}{3}\right )^{2}_{0} + \left (\dfrac {x}{2} \sqrt {8 - x^{2}} + \dfrac {8}{2} \sin^{-1} \dfrac {x}{2\sqrt {2}} \right )_{2}^{2\sqrt {2}} \right ]
= 2\left [\dfrac {2\sqrt {2}}{3} (2^{3/2}) + 4\times \dfrac {\pi}{2} - 2 - 4\times \dfrac {\pi}{4}\right ]
= 2\left [\dfrac {2\sqrt {2}}{3} \cdot 2\sqrt {2} + 2\pi - 2 - \pi \right ]
= 2\left [\dfrac {8}{3} - 2 + \pi \right ] + 2\left (\dfrac {2}{3} + \pi \right ) = 2\pi + \dfrac {4}{3}
Area common to the curves
5x^2 = 0
and
2x^2 + 9 = 0
is equal to
Report Question
0%
12 \sqrt 3
0%
6 \sqrt3
0%
36
0%
18
Explanation
Given curves
y=5x^2
\Rightarrow x^2=\dfrac{y}{5}
....(1)
which is a parabola opening upward having vertex at (0,0)
Other curve is
2x^2+9=y
.....(2)
\Rightarrow x^2=\dfrac{y-9}{2}
which is a parabola having vertex at (0,9).
Now, solving eqn (1) and (2), we get
5x^2=2x^2+9
\Rightarrow 3x^2=9
\Rightarrow x=\pm\sqrt{3}
\Rightarrow y=15
Point of intersection of the curves is
(-\sqrt{3},15)
and
(\sqrt{3},15)
Required area
=2(ar OAB)
=2 \int ^\sqrt 3 _0 (y_1-y_2)dx
= 2 \int ^\sqrt 3 _0 \{ (2x^2 + 9) - 5 x^2\} dx
2 \int ^\sqrt 3 _ 0 (9-3x^2) dx
= 2 \left( 9x - 3 \displaystyle \frac{x^3}{3}\right) ^\sqrt3 _0
= 2(9 \sqrt 3 - 3 \sqrt 3 ) = 12 \sqrt 3
sq. units
The area of the region, bounded by the curves
y = \sin^{-1} x + x (1 - x)
and
y = \sin^{-1} x - x (1 - x)
in the first quadrant, is
Report Question
0%
1
0%
\dfrac {1}{2}
0%
\dfrac {1}{3}
0%
\dfrac {1}{4}
Explanation
\sin^{-1} x
is defined, if
-1 \leq x \leq 1
In first quadrant
0\leq x\leq 1
and
x(1 - x) \geq 0
\therefore y = \sin^{-1} x + x (1 - x)
...... (i)
Lies above
y = \sin^{-1} x - x (1 - x)
...... (ii)
On solving, we get
2x (1 - x) = 0
\Rightarrow x = 0, 1
\therefore
Required area
=\displaystyle \int_{0}^{1} (y_{1} - y_{2})dx
=\displaystyle \int_{0}^{1} [\left \{\sin^{-1} x + x(1 - x)\right \} - \left \{\sin^{-1} x - x(1 - x) \right \}]dx
= 2\displaystyle \int_{0}^{1} (x - x^{2}) dx
= 2\left [\dfrac {x^{2}}{2} - \dfrac {x^{3}}{3}\right ]_{0}^{1} = 2\left (\dfrac {1}{2} - \dfrac {1}{3}\right ) = \dfrac {1}{3}
The area of the region enclosed between by the
{x^2} + {y^2} = 16
and the parabola
{y^2} = 6x
.
Report Question
0%
\dfrac{2}{3} (\sqrt 3 + 4\pi)
sq. units
0%
\dfrac{4}{3} (\sqrt 3 + 4\pi)
sq. units
0%
\dfrac{2}{3} (\sqrt 3 + 8\pi)
sq. units
0%
\dfrac{4}{3} (\sqrt 3 + 8\pi)
sq. units
Explanation
Point of intersection of the parabola and the circle is obtained by solving the equations:
{x}^{2}+{y}^{2}=16
and
{y}^{2}=6x
\Rightarrow\,{x}^{2}+6x-16=0
\Rightarrow\,{x}^{2}+8x-2x-16=0
\Rightarrow\,x\left(x+8\right)-2\left(x+8\right)=0
\Rightarrow\,\left(x-2\right)\left(x+8\right)=0
\Rightarrow\,x=2,\,x=-8
\therefore\,x=2
is the only possible solution(from the fig.)
\therefore\,
when
x=2,\,y=\pm\sqrt{6\times 2}=\pm\,2\sqrt{3}
\therefore\,B\left(2,2\sqrt{3}\right)
and
{B}^{\prime}\left(2,-2\sqrt{3}\right)
are the points of intersection of parabola and the circle.
Required area
=area\,of\,OBA{B}^{\prime}O=2\,area\,of \,OBAO
=2\left[area\,of\,OBDO+area\,of\,DBAD\right]
=2\left[\displaystyle\int_{0}^{2}{\sqrt{6x}dx}+\displaystyle\int_{2}^{4}{\sqrt{16-{x}^{2}}dx}\right]
=2\left[\sqrt{6}\left[\dfrac{{x}^{\frac{3}{2}}}{\dfrac{3}{2}}\right]_{0}^{2}+\left[\dfrac{1}{2}x\sqrt{16-{x}^{2}}+\dfrac{1}{2}\times 16{\sin}^{-1}{\dfrac{x}{4}}\right]_{2}^{4}\right]
=2\left[\left[\sqrt{6}\times\dfrac{2}{3}\times{2}^{\frac{3}{2}}-0\right]+\left[\dfrac{1}{2}\times\,4\sqrt{16-16}+\dfrac{1}{2}\times\,16{\sin}^{-1}{\dfrac{4}{4}}-\dfrac{1}{2}\times\,2\sqrt{16-4}-\dfrac{1}{2}\times\,16{\sin}^{-1}{\dfrac{1}{2}}\right]\right]
=2\left[\dfrac{8\sqrt{3}}{3}+\dfrac{8\pi}{2}-2\sqrt{3}-\dfrac{8\pi}{6}\right]
=2\left[\dfrac{8\sqrt{3}-6\sqrt{3}}{3}+8\left(\dfrac{\pi}{2}-\dfrac{\pi}{6}\right)\right]
=2\left[\dfrac{2\sqrt{3}}{3}+8\times\dfrac{2\pi}{6}\right]
=\dfrac{4\sqrt{3}}{3}+\dfrac{16\pi}{3}
The area of the region enclosed between parabola
{y}^{2}=x
and the line
y=mx
is
\cfrac{1}{48}
. Then, the value of
m
is
Report Question
0%
-2
0%
-1
0%
1
0%
2
Explanation
Equation of parabola is
{y}^{2}=x
and line
y=mx
For intersection point of both curves put
x={y}^{2}
,
we get
y=m{y}^{2}\Rightarrow
y(my-1)=0
\Rightarrow
y=0
or
y=\cfrac{1}{m}
Then,
x=0
or
x=\cfrac{1}{{m}^{2}}
\therefore
Intersection points are
(0,0)
and
P(\cfrac{1}{{m}^{2}},\cfrac{1}{m})
\therefore
Required area
=\displaystyle \int _{ 0 }^{ 1/m }{ \left| \left( \cfrac { y }{ m } -{ y }^{ 2 } \right) \right| dy } =\left| { \left[ \cfrac { { y }^{ 2 } }{ 2m } -\cfrac { { y }^{ 3 } }{ 3 } \right] }_{ 0 }^{ 1/m } \right| \quad
=\left| \cfrac { 1 }{ 2{ m }^{ 3 } } -\cfrac { 1 }{ 3{ m }^{ 3 } } \right| =\left| \cfrac { 1 }{ 6{ m }^{ 3 } } \right| =\cfrac { 1 }{ 48 }
\Rightarrow \cfrac { 1 }{ 6{ m }^{ 3 } } =\pm \cfrac { 1 }{ 48 } \Rightarrow { m }^{ 3 }=\pm 8
Now if
{m}^{3}=8
{ m }^{ 3 }=8\quad \Rightarrow { m }^{ 3 }={ \left( 2 \right) }^{ 3 }\Rightarrow m=2
If
{m}^{3}=-8
\Rightarrow { m }^{ 3 }=-8
\Rightarrow { m }^{ 3 }={ -\left( 2 \right) }^{ 3 }
\Rightarrow m=-2
The area of the region bounded by the curves,
y^{2} = 8x
and
y = x
is
Report Question
0%
\dfrac {64}{3}
0%
\dfrac {32}{3}
0%
\dfrac {16}{3}
0%
\dfrac {8}{3}
Explanation
Given curves,
y^2=8x \rightarrow
(i)
and
y=x \rightarrow
(ii)
On solving Eqs. (i) and (ii), we get
x^2-8x=0
x(x-8)=0
and
y=0,8
\therefore
Required area (OPA)
=\displaystyle \int_0^8(\sqrt{8x}-x)dx
=\left[2\sqrt2. \dfrac23.x^{3/2}-\dfrac{x^2}2\right]_0^8
=\dfrac{4\sqrt2}3.(8)^{3/2}-\dfrac{8^2}2
=\dfrac{32}3
The area of the region described by
\left \{(x, y)/ x^{2} + y^{2} \leq 1\ and\ y^{2} \leq 1 - x\right \}
is
Report Question
0%
\dfrac {\pi}{2} - \dfrac {2}{3}
0%
\dfrac {\pi}{2} + \dfrac {2}{3}
0%
\dfrac {\pi}{2} + \dfrac {4}{3}
0%
\dfrac {\pi}{2} - \dfrac {4}{3}
The area (in square units) of the region bounded by the curves
x=y^2
and
x=3-2y^2
is
Report Question
0%
\dfrac{3}{2}
0%
2
0%
3
0%
4
Explanation
Required area
\displaystyle =2\int_0^1(3-2y^2-y^2)dy=6\int_0^1(1-y^2)dy=6\left(y-\dfrac{y^3}{3}\right)_0^1=4
Since given curves are symmetrical about x-axis
The area (in square units) bounded by the curves
x\, =\, -2y^2
and
x\, =\, 1-3y^2
is
Report Question
0%
\displaystyle \frac{2}{3}
0%
1
0%
\displaystyle \frac{4}{3}
0%
\displaystyle \frac{5}{3}
Explanation
x=-2y^2
x=1-3y^2
-2y^2=1-3y^2\Rightarrow y^2=1\Rightarrow y=\pm 1
Area between the curves
= A_1-A_2
\displaystyle =\int^1_{-1}(1-3y^2+2y^2)dy
=\int^1_{-1}(1-y^2)dy
=[y-\dfrac{y^3}{3}]^1_{-1}=\dfrac{4}{3}
The area (in square units) of the region bounded by
x=-1, x=2, y=x^2+1
and
y=2x-2
is
Report Question
0%
10
0%
7
0%
8
0%
9
Explanation
A_1=ar (ABC)
=\frac{1}{2}\times |2||4|
=4
units
A_2=ar(CDE)
=\frac{1}{2}\times 1\times 2
A_2=1
units
Area of region between parabola and x-axis
A_3=\int_{-1}^2(x^2+1)dx=\left[\dfrac{x^3}{3}+x\right]_{-1}^{2}
Area required
=A_3+A_1-A_2
=6+4-1
=9
units
Area of region
\displaystyle \left\{ \left( x,y \right) \in { R }^{ 2 }:y\ge \sqrt { \left| x+3 \right| } ,5y\le x+9\le 15 \right\}
is equal to
Report Question
0%
\displaystyle \frac { 1 }{ 6 }
0%
\displaystyle \frac { 4 }{ 3 }
0%
\displaystyle \frac { 3 }{ 2 }
0%
\displaystyle \frac { 5 }{ 3 }
Explanation
Area
ABE
(under parabola)
=\displaystyle \int^{-3}_{-4}\sqrt{-x-3}dx=\frac{2}{3}
Area
BCD
(under parabola)
=\displaystyle \int^{1}_{-3}\sqrt{x+3}dx=\frac{16}{3}
Area of trapezium
ACDE
=\dfrac{1}{2}(1+2)5=\dfrac{15}{2}
Required area
= \dfrac{15}{2}-\dfrac{16}{3}-\dfrac{2}{3}=\dfrac{3}{2}
Area bounded by curve
y=x^2
and
y=2-x^2
is ?
Report Question
0%
\dfrac{8}{3}
sq units
0%
\dfrac{3}{8}
sq units
0%
\dfrac{3}{2}
sq units
0%
None of these
Explanation
y=x^2
and
y=2-x^2
now both he curve intersect each other ,
from both the equation
x^2=2-x^2
x=+1,-1
now area bounded by both curve is
A =\displaystyle \int_{-1}^{1}(2-x^2)-\displaystyle \int_{-1}{1}(x^2)
because both are even function hence
A =2[\displaystyle \int_{0}^{1}(2-x^2)-\displaystyle \int_{0}{1}(x^2)
]
A=2[(2x-\dfrac{x^3}{3})-(\dfrac{x^3}{3})]
now on putting upper and lower value of limit ,we will get
A=\dfrac{8}{3}
If the area bounded by the curves
y=a{ x }^{ 2 }
and
x=a{ y }^{ 2 }
,
(a>0)
is
1
sq.units, then the value of
a
is
Report Question
0%
\cfrac { 2 }{ 3 }
0%
\cfrac { 1 }{ \sqrt 3 }
0%
1
0%
4
Explanation
Points of intersection of
y=ax^2
and
x=ay^2
are
(0,0)
and
\left (\dfrac {1}{a},\dfrac {1}{a}\right)
.
Hence,
\displaystyle \int _0 ^{\tfrac1a} \left (\sqrt {\dfrac {x}{a}}-ax^2\right)dx=1
\Rightarrow \displaystyle\cfrac{2x^{\tfrac32}}{3\sqrt a} \big|_0^{\tfrac1a} - \cfrac{ax^3}3\bigr|_0^{\tfrac1a} =1
\Rightarrow \cfrac{2}{3a^2} - \cfrac1{3a^2} =1
\Rightarrow \cfrac{1}{3a^2} =1
\Rightarrow a=\dfrac {1}{\sqrt3}
....As
(a>0)
The ratio of the areas of two regions of the curve
C_1 : 4x^2 + \pi^2y^2 = 4\pi^2
divided by the curve
C_2 : y = -sgn \left(x - \dfrac{\pi}{2}\right) \cos x
(where sgn(x) denotes signum function) is -
Report Question
0%
\dfrac{\pi^2 +4}{\pi^2-2\sqrt{2}}
0%
\dfrac{\pi^2-2}{\pi^2+2}
0%
\dfrac{\pi^2+6}{\pi^2+3\sqrt{3}}
0%
\dfrac{\pi^2+1}{\pi^2-\sqrt{2}}
If
z
is not purely real then area bounded by curves
lm\left(z+\dfrac{1}{z}\right) = 0
and
|z-1| = 2
is (in square units)-
Report Question
0%
4\pi
0%
3\pi
0%
2\pi
0%
\pi
The graphs of
f(x)=x^{2}
and
g(x)=cx^{3}(c>0)
intersect at the points
(0, 0)
and
(\dfrac{1}{c}, \dfrac{1}{c^{2}})
. If the region which lies between these graphs and over the interval
[0, \dfrac{1}{c}]
has the area equal to
(\dfrac{2}{3})sq.\ units
, then the value of
c
is :
Report Question
0%
\dfrac{1}{3}
0%
\dfrac{1}{2}
0%
1
0%
2
0:0:3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page