CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 11 - MCQExams.com

The area bounded by the curves $$y=\log x$$, $$y=\log \left | x \right |$$, $$y=\left | \log x \right |$$ and $$y=\left | \log \left | x \right | \right |$$
  • 4 sq. units
  • 6 sq. units
  • 10 sq. units
  • None of these
Find the area bounded by $$\displaystyle y=\sqrt{x}$$ and $$y = x$$.
  • $$\displaystyle \frac{1}{8}sq.units$$
  • $$\displaystyle \frac{1}{4}sq.units$$
  • $$\displaystyle \frac{1}{12}sq.units$$
  • $$\displaystyle \frac{1}{6}sq.units$$
The area of the figure bounded by $$y^{2}= 2x+1$$ and $$x-y-1= 0$$ is:
  • $$2/3$$
  • $$4/3$$
  • $$8/3$$
  • $$11/3$$
The parabolas $$y^{2}=4x$$ and $$x^{2}=4y$$ divide the square region bounded by the lines $$x=4, y=4$$ and the coordinate axes. If $$S_{1}$$, $$S_{2}$$, $$S_{3}$$ are respectively the areas of these parts numbered from top to bottom; $$S_{1}: S_{2}: S_{3}$$ is
  • $$1: 2: 3$$
  • $$1: 2: 1$$
  • $$1: 1: 1$$
  • $$2: 1: 2$$
Find the area of the region bounded by the curves $$\displaystyle x=\frac{1}{2},x=2,y=logx$$ and $$y=2^{x}$$
  • $$\displaystyle \frac{4-\sqrt{2}}{\log2}-\frac{5}{2} \log2+\frac{3}{2}sq.units$$
  • $$\displaystyle \frac{4+\sqrt{2}}{\log2}-\frac{3}{2} \log2+\frac{5}{2}sq.units$$
  • $$\displaystyle \frac{4-\sqrt{2}}{\log2}-\frac{3}{2} \log2+\frac{5}{2}sq.units$$
  • $$\displaystyle \frac{4+\sqrt{2}}{\log2}-\frac{5}{2} \log2+\frac{3}{2}sq.units$$
The curve $$f(x) = \displaystyle Ax^{2}+Bx+C$$ passes through the point (1, 3) and line $$4x + y = 8$$ is tangent to it at the point (2, 0). The area enclosed by $$y = f(x),$$ the tangent line and the y-axis is
  • $$\dfrac{4}{3}$$
  • $$\dfrac{8}{3}$$
  • $$\dfrac{16}{3}$$
  • $$\dfrac{32}{3}$$
For which of the following values of m is the area of the region bounded by the curve $$\displaystyle y=x-x^{2}$$ and the line $$y = mx$$ equals to 9/2 ?
  • - 4
  • - 2
  • 2
  • 4
The area bounded between the curve $$\displaystyle y = \tan x$$; tangent drawn to it at $$\displaystyle x=\frac { \pi  }{ 4 } $$ and $$\displaystyle y\ge 0$$ is
  • $$\displaystyle \frac { 1 }{ 4 } \left( { \log }_{ e }4-1 \right) $$
  • $$\displaystyle \frac { 1 }{ 2 } \left( {\log }_{ e }4-1 \right) $$
  • $$\displaystyle \frac { 1 }{ 2 } \left( { \log }_{ e }4+1 \right) $$
  • $$\displaystyle \frac { 1 }{ 4 } \left( {\log }_{ e }4+1 \right) $$
The  area bounded by $${ y }^{ 2 }+8x=16$$ and $${ y }^{ 2 }-24x=48$$ is $$\displaystyle \frac { a\sqrt { 6 }  }{ c } $$, then $$a+c=$$
  • $$30$$
  • $$32$$
  • $$35$$
  • None
Suppose $$g(x) = 2x+1$$ and $$h(x) = \displaystyle 4x^{2}+4x+5$$ and $$h(x) = (fog)(x)$$ The area enclosed by the graph of the function $$y = f(x)$$ and the pair of tangents drawn to it from the origin is
  • 8/3
  • 16/3
  • 32/3
  • none
Consider two curves $$\displaystyle C_{1}:y=\frac{1}{x}$$ and $$\displaystyle C_{2}$$ : $$y = \displaystyle lnx$$ on the xy plane Let $$\displaystyle D_{1}$$ denotes the region surrounded by $$\displaystyle C_{1}$$, $$\displaystyle C_{2}$$ and the line $$x = 1$$ and $$\displaystyle D_{2}$$ denotes the region surrounded by $$\displaystyle C_{1}$$, $$\displaystyle C_{2}$$ and the line $$x = a$$ If $$\displaystyle D_{1}$$=$$\displaystyle D_{2}$$ then the value of 'a':
  • $$\displaystyle \frac{e}{2}$$
  • $$e$$
  • $$e-1$$
  • $$2(e-1)$$
Suppose $$y = f(x)$$ and $$y = g(x)$$ are two functions whose graphs intersect at three points $$(0, 4), (2, 2)$$ and $$(4, 0)$$ with $$f(x) > g(x)$$ for $$0 < x < 2$$ and $$f(x) < g(x)$$ for $$2 < x < 4 $$. if $$\displaystyle \int_{0}^{4}\left ( f(x)-g(x) \right )dx=10$$ and $$\displaystyle \int_{2}^{4}\left ( g(x)-f(x) \right )dx=5$$, the area between two curves for $$0 < x < 2$$, is:
  • 5
  • 10
  • 15
  • 20
The area bounded by the curves $$\displaystyle y=-\sqrt{-x}$$ and $$\displaystyle x=-\sqrt{-y}$$ were $$\displaystyle x,y\leq 0$$ 
  • Can not be determined
  • is 1/3
  • is 2/3
  • is same as that of the figure by the curves $$\displaystyle y=\sqrt{-x};x\leq 0$$ and $$\displaystyle x=\sqrt{-y};y\leq 0$$
The area of the figure bounded by $${ y }^{ 2 }=2x+1$$ and $$x-y-1=0$$ is
  • $$\displaystyle \frac { 16 }{ 3 } $$
  • $$\displaystyle \frac { 8 }{ 3 } $$
  • $$\displaystyle \frac { 4 }{ 3 } $$
  • None of these
Area of the region enclosed between the curves $$\displaystyle x=y^{2}-1$$ and $$\displaystyle x = \left | y \right |\sqrt{1-y^{2}}$$ is
  • $$1$$
  • $$4/3$$
  • $$2/3$$
  • $$2$$
The smaller area enclosed by $$y=f(x)$$, where $$f(x)$$ is polynomial of least degree satisfying $$\displaystyle{ \left[ \lim _{ x\rightarrow 0 }{ 1+\frac { f\left( x \right)  }{ { x }^{ 3 } }  }  \right]  }^{ \tfrac { 1 }{ x }  }=e$$ and the circle $$x^2+y^2=2$$ above the $$x-$$axis is
  • $$\displaystyle\frac { \pi }{ 2 } +\frac { 3 }{ 5 } $$
  • $$\displaystyle\frac { \pi }{ 2 } -\frac { 3 }{ 5 } $$
  • $$\dfrac { \pi }{ 2 } -\dfrac { 6 }{ 5 } $$
  • None of these
The line $$3x + 2y =13$$ divides the area enclosed by the curve $$\displaystyle 9x^{2}+4y^{2}-18x-16y-11=0$$ in two parts Find the ratio of the larger area to the smaller area
  • $$\displaystyle \frac{3\pi+2}{\pi -2}$$
  • $$\displaystyle \frac{3\pi-2}{\pi +2}$$
  • $$\displaystyle \frac{\pi+2}{\pi -2}$$
  • $$\displaystyle \frac{\pi-2}{\pi +2}$$
If the area enclosed by the parabolas $$\displaystyle y=a-x^{2}$$ and $$\displaystyle y=x^{2}$$ is $$\displaystyle 18\sqrt {2}$$ sq. units Find the value of 'a'
  • $$a = -9$$
  • $$a= 6$$
  • $$a =9$$
  • $$a=-6$$
The area enclosed between the curves $$y=x^3$$ and $$y=\sqrt{x}$$ is (in square units)
  • $$\displaystyle\frac{5}{3}$$
  • $$\displaystyle\frac{5}{4}$$
  • $$\displaystyle\frac{5}{12}$$
  • $$\displaystyle\frac{12}{5}$$
Find the area bounded by $$\displaystyle y = \cos ^{-1}x,y=\sin ^{-1}x$$ and $$y-$$axis
  • $$\displaystyle \left ( 2-\sqrt{2} \right )$$ sq. units
  • $$\displaystyle \left ( \sqrt{2}-{2} \right )$$ sq. units
  • $$2 \sqrt{2}$$ sq. units
  • $$\sqrt {2}$$ sq. units
Find the area enclosed between the curves $$\displaystyle y=\log_{e}\left ( x+e \right ), x=\log_{e}\left ( 1/y \right )$$ & the x-axis
  • 1 sq. units
  • 2 sq. units
  • 3 sq. units
  • 4 sq. units
Find the value(s) of the parameter 'a' (a > 0) for each of which the area of the figure bounded by the straight line $$\displaystyle y=\frac{a^{2}-ax}{1+a^{4}}$$ & the parabola $$\displaystyle y=\frac{x^{2}+2ax+3a^{2}}{1+a^{4}}$$ is the greatest
  • $$\displaystyle a=2^{1/4}$$
  • $$\displaystyle a=5^{1/4}$$
  • $$\displaystyle a=7^{1/4}$$
  • $$\displaystyle a=3^{1/4}$$
Find the positive value of 'a' for the which the parabola $$\displaystyle y=x^{2}+1$$ bisects the area of the rectangle with vertices $$(0, 0), (a, 0), (0, \displaystyle a^{2}+1)$$ and $$(a, \displaystyle a^{2}+1)$$
  • $$\displaystyle \sqrt 2$$
  • $$\displaystyle \sqrt 3$$
  • $$\displaystyle \sqrt 5$$
  • $$\displaystyle \sqrt 7$$
A figure is bounded by the curves $$\displaystyle y=\left | \sqrt{2}\sin \frac{\pi x}{4} \right |$$ $$y = 0, x = 2$$ & $$x = 4$$. At what angles to the positive $$x$$-axis straight lines must be drawn through $$(4, 0)$$, so that these lines divide the figure into three parts of the same size
  • $$\displaystyle \pi -\tan ^{-1}\frac{2\sqrt{2}}{3\pi },\pi +\tan^{-1} \frac{4\sqrt{2}}{3\pi }$$
  • $$\displaystyle \pi -\tan ^{-1}\frac{2\sqrt{2}}{2\pi },\pi -\tan ^{-1}\frac{4\sqrt{2}}{2\pi }$$
  • $$\displaystyle \pi -\tan ^{-1}\frac{2\sqrt{2}}{3\pi },\pi -\tan ^{-1}\frac{4\sqrt{2}}{3\pi }$$
  • $$\displaystyle \pi +\tan ^{-1}\frac{2\sqrt{2}}{2\pi },\pi -\tan ^{-1}\frac{4\sqrt{2}}{2\pi }$$
In what ratio does the x-axis divide the area of the region bounded by the parabolas $$\displaystyle y=4x-x^{2}$$ and $$\displaystyle y=x^{2}-x$$?
  • 4 : 121
  • 4 : 144
  • 4 : 169
  • 4 : 100
For what value of 'a' is the area of the figure bounded by $$\displaystyle y=\frac{1}{x}, y=\frac{1}{2x-1}$$ $$x = 2$$ & $$x = a$$ equal to $$\displaystyle ln\frac{4}{\sqrt{5}}$$?
  • $$\displaystyle a=4\:$$
  • $$\displaystyle a=8\:$$
  • $$\displaystyle a=4\: or \frac{2}{5}\left ( 6-\sqrt{21} \right )$$
  • none of these
A polynomial function f(x) satisfies the condition $$f(x + 1) = f(x) + 2x + 1$$ Find f(x) if $$f(0) = 1$$ Find also the equations of the pair of tangents from the origin on the curve $$y = f(x)$$ and compute the area enclosed by the curve and the pair of tangents
  • $$\displaystyle f(x)=x^{2}+1;y=\pm x; A=\frac{2}{3}sq. units$$
  • $$\displaystyle f(x)=x^{2}+1;y=\pm x; A=\frac{4}{3}sq. units$$
  • $$\displaystyle f(x)=x^{2}+1;y=\pm 2x; A=\frac{2}{3}sq. units$$
  • $$\displaystyle f(x)=x^{2}+1;y=\pm 2x; A=\frac{4}{3}sq. units$$
Area enclosed between the curves $${ y }^{ 2 }=x$$ and $${ x }^{ 2 }=y$$ is equal to
  • $$\displaystyle 2\int _{ 0 }^{ 1 }{ \left( x-{ x }^{ 2 } \right) dx } $$
  • $$\displaystyle \frac { 1 }{ 3 } $$
  • area of region $$\left\{ \left( x,y \right) :{ x }^{ 2 }\le y\le \left| x \right|  \right\} $$
  • $$\displaystyle \frac { 2 }{ 3 } $$
Let $$f(x)$$ be a continuous function given by $$\displaystyle f\left ( x \right )=2x$$ for $$\displaystyle \left | x \right |\leq 1$$ for $$\displaystyle f\left ( x \right )=x^{2}+ax+b$$ for $$\displaystyle \left | x \right |> 1$$. Find the area of the region in the third quadrant bounded by the curves $$\displaystyle x=-2y^{2}$$ and $$y = f(x)$$ lying on the left of the line $$8x + 1 = 0$$
  • $$\dfrac{235}{192} ; a = 2 ; b = - 1$$
  • $$\dfrac{235}{192} ; a = -1 ; b = 2$$
  • $$\dfrac{257}{192} ; a = -1 ; b = 2$$
  • $$\dfrac{257}{192} ; a = 2 ; b = - 1$$
Let $$\displaystyle C_{1}$$ & $$\displaystyle C_{2}$$ be two curves passing through the origin as shown in the figure A  curve C is said to "bisect the area" the region between $$\displaystyle C_{1}$$ & $$\displaystyle C_{1}$$ if for each point P of C the two shaded regions A & B shown in the figure have equal areas Determine the upper curve $$\displaystyle C_{2}$$ given that the bisecting curve C has the equation $$\displaystyle y=x^{2}$$ & that the lower curve $$\displaystyle C_{1}$$ has the equation $$\displaystyle y=x^{2}/2$$ 
261710_21f627180e0e4e76a665804f347bc987.png
  • $$\displaystyle \left ( 16/9 \right )x^{2}$$
  • $$\displaystyle \left ( 25/9 \right )x^{2}$$
  • $$\displaystyle \left ( 25/16 \right )x^{2}$$
  • $$\displaystyle \left ( 9/25 \right )x^{2}$$
Find the area bounded by $$y = x + sinx$$ and its inverse between $$x = 0$$ and $$x = \displaystyle 2\pi$$
  • $$2$$
  • $$4$$
  • $$6$$
  • $$8$$
The area of the region bounded by the parabola $$y={x}^{2}-4x+5$$ and the straight line $$y=x+1$$ is
  • $$\cfrac{1}{2}$$
  • $$2$$
  • $$3$$
  • $$\cfrac{9}{2}$$
Area bounded by $$\displaystyle y=1-\ell { n }^{ 2 }x,x-$$axis which is common with $$\displaystyle x\ge 1$$, is -
  • $$\displaystyle e-\frac { 5 }{ e } $$
  • $$\displaystyle e-2$$
  • $$\displaystyle 3$$
  • $$\displaystyle 1$$
 Area bounded by $$\displaystyle y=2x-{ x }^{ 2 }$$ & $$\displaystyle (x-1{ ) }^{ 2 }+{ y }^{ 2 }=1$$ in first quadrant, is: 
  • $$\displaystyle \frac { \pi }{ 2 } -\frac { 4 }{ 3 } $$
  • $$\displaystyle \frac { \pi }{ 2 } -\frac { 2 }{ 3 } $$
  • $$\displaystyle \frac { \pi }{ 2 } +\frac { 4 }{ 3 } $$
  • $$\displaystyle \frac { \pi }{ 2 } +\frac { 2 }{ 3 } $$
The area of the region bounded by the curves $$x^{2} + y^{2} = 8$$ and $$y^{2} = 2x$$ is
  • $$2\pi + \dfrac {1}{3}$$
  • $$\pi + \dfrac {1}{3}$$
  • $$2\pi + \dfrac {4}{3}$$
  • $$\pi + \dfrac {4}{3}$$
Area common to the curves $$5x^2  = 0$$ and $$ 2x^2  + 9 = 0$$ is equal to
  • $$12 \sqrt 3 $$
  • $$ 6 \sqrt3$$
  • $$36$$
  • $$18$$
The area of the region, bounded by the curves $$y = \sin^{-1} x + x (1 - x)$$ and $$y = \sin^{-1} x - x (1 - x)$$ in the first quadrant, is
  • $$1$$
  • $$\dfrac {1}{2}$$
  • $$\dfrac {1}{3}$$
  • $$\dfrac {1}{4}$$
The area of the region enclosed between by the $${x^2} + {y^2} = 16$$  and the parabola  $${y^2} = 6x$$.
  • $$\dfrac{2}{3} (\sqrt 3 + 4\pi)$$ sq. units
  • $$\dfrac{4}{3} (\sqrt 3 + 4\pi)$$ sq. units
  • $$\dfrac{2}{3} (\sqrt 3 + 8\pi)$$ sq. units
  • $$\dfrac{4}{3} (\sqrt 3 + 8\pi)$$ sq. units
The area of the region enclosed between parabola $${y}^{2}=x$$ and the line $$y=mx$$ is $$\cfrac{1}{48}$$. Then, the value of $$m$$ is
  • $$-2$$
  • $$-1$$
  • $$1$$
  • $$2$$
The area of the region bounded by the curves, $$y^{2} = 8x$$ and $$y = x$$ is
  • $$\dfrac {64}{3}$$
  • $$\dfrac {32}{3}$$
  • $$\dfrac {16}{3}$$
  • $$\dfrac {8}{3}$$
The area of the region described by $$\left \{(x, y)/ x^{2} + y^{2} \leq 1\ and\ y^{2} \leq 1 - x\right \}$$ is
  • $$\dfrac {\pi}{2} - \dfrac {2}{3}$$
  • $$\dfrac {\pi}{2} + \dfrac {2}{3}$$
  • $$\dfrac {\pi}{2} + \dfrac {4}{3}$$
  • $$\dfrac {\pi}{2} - \dfrac {4}{3}$$
The area (in square units) of the region bounded by the curves $$x=y^2$$ and $$x=3-2y^2$$ is
  • $$\dfrac{3}{2}$$
  • 2
  • 3
  • 4
The area (in square units) bounded by the curves $$x\, =\, -2y^2$$ and $$x\, =\, 1-3y^2$$ is
  • $$\displaystyle \frac{2}{3}$$
  • $$1$$
  • $$\displaystyle \frac{4}{3}$$
  • $$\displaystyle \frac{5}{3}$$
The area (in square units) of the region bounded by $$x=-1, x=2, y=x^2+1$$ and $$y=2x-2$$ is 
  • 10
  • 7
  • 8
  • 9
Area of region $$\displaystyle \left\{ \left( x,y \right) \in { R }^{ 2 }:y\ge \sqrt { \left| x+3 \right|  } ,5y\le x+9\le 15 \right\} $$ is equal to
  • $$\displaystyle \frac { 1 }{ 6 } $$
  • $$\displaystyle \frac { 4 }{ 3 } $$
  • $$\displaystyle \frac { 3 }{ 2 } $$
  • $$\displaystyle \frac { 5 }{ 3 } $$
Area bounded by curve $$y=x^2$$ and $$y=2-x^2$$ is ?
  • $$\dfrac{8}{3}$$ sq units
  • $$\dfrac{3}{8}$$ sq units
  • $$\dfrac{3}{2}$$ sq units
  • None of these
If the area bounded by the curves $$y=a{ x }^{ 2 }$$ and $$x=a{ y }^{ 2 }$$, $$(a>0)$$ is $$1$$ sq.units, then the value of $$a$$ is
  • $$\cfrac { 2 }{ 3 } $$
  • $$\cfrac { 1 }{ \sqrt 3 } $$
  • $$1 $$
  • $$4$$
The ratio of the areas of two regions of the curve $$C_1 : 4x^2 + \pi^2y^2 = 4\pi^2$$ divided by the curve $$C_2 : y = -sgn \left(x - \dfrac{\pi}{2}\right) \cos x$$ (where sgn(x) denotes signum function) is - 
  • $$\dfrac{\pi^2 +4}{\pi^2-2\sqrt{2}}$$
  • $$\dfrac{\pi^2-2}{\pi^2+2}$$
  • $$\dfrac{\pi^2+6}{\pi^2+3\sqrt{3}}$$
  • $$\dfrac{\pi^2+1}{\pi^2-\sqrt{2}}$$
If $$z$$ is not purely real then area bounded by curves $$lm\left(z+\dfrac{1}{z}\right) = 0$$ and $$|z-1| = 2$$ is (in square units)-
  • $$4\pi$$
  • $$3\pi$$
  • $$2\pi$$
  • $$\pi$$
The graphs of $$f(x)=x^{2}$$ and $$g(x)=cx^{3}(c>0)$$ intersect at the points $$(0, 0)$$ and $$(\dfrac{1}{c}, \dfrac{1}{c^{2}})$$. If the region which lies between these graphs and over the interval $$[0, \dfrac{1}{c}]$$ has the area equal to $$(\dfrac{2}{3})sq.\ units$$, then the value of $$c$$ is :
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$2$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers