CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 12 - MCQExams.com

If the line $$x = \alpha $$ divides the area of region $$R=\left\{ \left( x,y \right) \in { R }^{ 2 }:{ x }^{ 3 }\le y\le x,0\le x\le 1 \right\} $$ into two equal parts, then
  • $$2{ \alpha }^{ 4 }-4{ \alpha }^{ 2 }+1=0$$
  • $${ \alpha }^{ 4 }+4{ \alpha }^{ 2 }-1=0$$
  • $$0 < \alpha \le \dfrac { 1 }{ 2 } $$
  • $$\dfrac { 1 }{ 2 } < \alpha < 1$$
The area bounded by the parabolas $$y^2 = 4a(x + a)$$ and $$y^2 = - 4a (x - a)$$  is
  • $$\dfrac{16}{3} a^2$$ sq units
  • $$\dfrac{8}{3} $$ sq units
  • $$\dfrac{4}{3} a^2$$ sq units
  • None of these
The area of the region bounded by the curves $$y = 2^{x}, y = 2x - x^{2}$$ and $$x = 2$$ is
  • $$\dfrac {3}{\log 2} - \dfrac {4}{3}$$
  • $$\dfrac {3}{\log 2} - \dfrac {4}{9}$$
  • $$\dfrac {3}{2} - \dfrac {\log 2}{9}$$
  • None of these
The area of the portion of the circle $${ x }^{ 2 }+{ y }^{ 2 }=64$$ which is exterior to the parabola $${ y }^{ 2 }=12x$$, is
  • $$\left( 8\pi -\sqrt { 3 } \right) $$ sq units
  • $$\dfrac { 16 }{ 3 } \left( 8-\sqrt { 3 } \right) $$ sq units
  • $$\dfrac { 16 }{ 3 } \left( 8\pi -\sqrt { 3 } \right) $$ sq units
  • None of the above
The area bounded byu the curve y = cos x, the line joining  $$(- \pi / 4 , \cos (- \pi / 4 ))$$ and (0, 2) and the line joining  $$( \pi / 4 , \cos ( \pi / 4 ))$$ and (0, 2) is :
  • $$\frac{4 + \sqrt{2}}{8} \pi - \sqrt{2}$$
  • $$\frac{4 + \sqrt{2}}{8} \pi + \sqrt{2}$$
  • $$\frac{4 + \sqrt{2}}{4} \pi - \sqrt{2}$$
  • $$\frac{4 + \sqrt{2}}{4} \pi + \sqrt{2}$$
Area common to the curves $$y^{2} = ax$$ and $$x^{2} + y^{2} = 4ax$$ is equal to
  • $$(9\sqrt {3} + 4\pi) \dfrac {a^{2}}{3}$$
  • $$(9\sqrt {3} + 4\pi)a^{2}$$
  • $$(9\sqrt {3} - 4\pi) \dfrac {a^{2}}{3}$$
  • None of these
Let function $$f_n$$ be the number of way in which a positive integer n can be written as an ordered sum of several positive integers. For example, for $$n=3$$, $${f_3} = 3,since, 3 = 3, 3 = 2 + 1$$ and $$ 3 = 1+1+1$$. Then$${f_5} =$$
  • $$4$$
  • $$5$$
  • $$6$$
  • $$7$$
Area bounded by the curves y= $$[\frac{x^{2}}{64}+2],y=x-1$$ and x=0 above x-axis is where $$[.]$$ denotes greatest $$x$$.
  • 2 sq. unit
  • 3 sq. unit
  • 4 sq. unit
  • none of these
The area bounded by circles $$x^2+y^2=r^2$$, $$r=1, 2$$ and rays given by $$2x^2-3xy-2y^2=0$$($$y > 0$$) is?
  • $$\pi$$
  • $$\dfrac{3\pi}{4}$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{4}$$
On the real line R, we define two functions f and g as follows:
$$f(x) = min [x - [x], 1 - x + [x]]$$,
$$g(x) = max [x - [x], 1 - x + [x]]$$,
where [x] denotes the largest integer not exceeding x. 
The positive integer n for which $$\displaystyle \int_{0}^{n}{(g(x) - f(x) ) dx = 100}$$ is?
  • $$100$$
  • $$193$$
  • $$200$$
  • $$202$$
The parabola $$y^2=4x+1$$ divides the disc $$x^2+y^2\leq 1$$ into two regions with areas $$A_1$$ and $$A_2$$. Then $$|A_1-A_2|$$ equals.
  • $$\displaystyle\frac{1}{3}$$
  • $$\displaystyle\frac{2}{3}$$
  • $$\displaystyle\frac{\pi}{4}$$
  • $$\displaystyle\frac{\pi}{3}$$
The area bounded by the curves $$y = \sin x, y = \cos x$$ and x-axis from $$x = 0$$ to $$x = \pi /2$$ is
  • $$2 + \sqrt {2}$$
  • $$\sqrt {2}$$
  • $$2$$
  • $$2 - \sqrt {2}$$
The area bounded by min (|x|, |y|) = 2 and max (|x|, |y|) = 4 is
  • 8 sq unit
  • 16 sq unit
  • 24 sq unit
  • 32 sq unit
Area bounded by the curves $$\displaystyle y = \left[ \frac{x^2}{64} + 2 \right]$$ ([.] denotes the greatest integer function) $$y = x - 1$$ and $$x = 0$$ above the x-axis is
  • 2
  • 3
  • 4
  • none of these
The area bounded by the curves $$y = \dfrac {1}{4} |4 - x^{2}|$$ and $$y = 7 -|x|$$ is
  • $$18$$
  • $$32$$
  • $$36$$
  • $$64$$
Consider two curves $$C_1 : (y - \sqrt 3)^2 = 4 ( x - \sqrt2) $$ and $$ C_2 : x^2 + y^2 = ( 6 + 2 \sqrt2 ) x + 2 \sqrt{3y} - 6 ( 1 + \sqrt2)$$ then
  • $$C_1 and C-2$$ touch each other only at one point.
  • $$C_1 and C-2$$ touch each other exactly at two points.
  • $$C_1 and C-2$$ intersect (but do not touch) at exactly two points.
  • $$C_1 and C-2$$ neither intersect nor touch each other.
The area bounded by $$x^2+y^2-2x=0$$ & $$y=\sin\displaystyle\frac{\pi x}{2}$$ in the upper half of the circle is?
  • $$\displaystyle\frac{\pi}{2}-\frac{4}{\pi}$$
  • $$\displaystyle\frac{\pi}{4}-\frac{2}{\pi}$$
  • $$\displaystyle \pi -\frac{8}{\pi}$$
  • None
Consider two curves $${C_1}\,:\,y = \frac{1}{x}\,and\,{C_2}:\,y = \,\ell nx$$  on the $$xy$$ plane. Let $${D_1}$$ denotes the region surrounded by $${C_1},{C_2}$$ and the lines $$x=1$$  and $${D_2}$$ denotes the region the region surrounded by $${C_1},{D_2}$$ and the line $$x=a$$. If a $${D_1}={D_2}$$ then the value of $$'a'$$ -
  • $$\frac{e}{2}$$
  • $$e$$
  • $$ 1$$
  • $$2\left( {e - 1} \right)$$
What is the area of the region bounded by the parabola $${ y }^{ 2 }=6(x-1)$$ and $${ y }^{ 2 }=3x$$
  • $$\cfrac { \sqrt { 6 } }{ 3 } $$
  • $$\cfrac { 2\sqrt { 6 } }{ 3 } $$
  • $$\cfrac { 4\sqrt { 6 } }{ 3 } $$
  • $$\cfrac { 5\sqrt { 6 } }{ 3 } $$
Area common to the circle $$x^{2}+y^{2}=64$$ and the parabola $$y^{2}=4x$$ is
  • $$\dfrac{16}{3}(4\pi + \sqrt{3})$$
  • $$\dfrac{16}{3}(8\pi + \sqrt{3})$$
  • $$\dfrac{16}{3}(4\pi - \sqrt{3})$$
  • $$none\ of\ these$$
The area bounded by the curves $$x= a \cos^3t, y= a \sin^3 t$$ is 
  • $$\dfrac{3\pi a^2}{8}$$
  • $$\dfrac{3\pi a^2}{16}$$
  • $$\dfrac{3\pi a^2}{32}$$
  • None of the above
$$Let\quad f(x)=2-\left| x-1 \right| and\quad g(x)={ \left( x-1 \right)  }^{ 2 },\quad then\quad $$
  • area bounded by $$f(x)$$ and $$g(x)$$ is $$\cfrac { 7 }{ 6 } $$
  • area bounded by $$f(x)$$ and $$g(x)$$ is $$\cfrac { 7 }{ 3 } $$
  • area bounded by $$f(x)$$$$g(x)$$ and $$x-$$ axis is $$\cfrac { 5 }{ 3 } $$
  • area bounded by $$f(x)$$$$g(x)$$ and $$x-$$ axis is $$\cfrac { 5 }{ 6 } $$
In the square ABCD, the "shaded" region is the intersection of two circular regions centered at B and D respectively. If AB= 10, then what is the area of the shaded region?
1035047_d234b612381142cbb1a35321b59c1619.png
  • $$25(\pi-2)$$
  • $$50(\pi-2)$$
  • $$25\pi$$
  • $$50\pi$$
  • $$ 40\pi (5-\sqrt{2})$$
The area bounded by the curves $$y={ \left( x-1 \right)  }^{ 2 },y={ \left( x+1 \right)  }^{ 2 }$$ and $$y=\dfrac { 1 }{ 4 }$$ is 
  • $$\dfrac { 1 }{ 3 } sq\ unit$$
  • $$\dfrac { 2 }{ 3 } sq\ unit$$
  • $$\dfrac { 1 }{ 4 } sq\ unit$$
  • $$\dfrac { 1 }{ 5 } sq\ unit$$
Find area curved by three circles 
  • $$(5\pi-3\sqrt{3})units^{2}$$
  • $$(5\pi+4\sqrt{3})units^{2}$$
  • $$(5\pi+3\sqrt{3})units^{2}$$
  • $$(5\pi+3\sqrt{2})units^{2}$$
If $$f\left(x\right)=$$max$$\left\{\sin{x},\cos{x},\dfrac{1}{2}\right\}$$, then the area of the region bounded by the curves $$y=f\left(x\right),x-$$axis $$y-$$axis and $$x=2\pi$$ is
  • $$\left(\dfrac{5\pi}{12}+3\right)$$.sq.unit
  • $$\left(\dfrac{5\pi}{12}+\sqrt{2}\right)$$.sq.unit
  • $$\left(\dfrac{5\pi}{12}+\sqrt{3}\right)$$.sq.unit
  • $$\left(\dfrac{5\pi}{12}+\sqrt{2}+\sqrt{3}\right)$$.sq.unit
The parabola $$y=\dfrac{x^2}{2}$$ divides the circle $$x^2+y^2=8$$ into two parts. Find the area of both parts.
  • $$6\pi+\dfrac{4}{3}$$ , $$2\pi-\dfrac{4}{3}$$
  • $$6\pi-\dfrac{4}{3}$$ , $$2\pi+\dfrac{4}{3}$$
  • $$6\pi+\dfrac{2}{3}$$ , $$2\pi-\dfrac{2}{3}$$
  • $$6\pi-\dfrac{2}{3}$$ , $$2\pi+\dfrac{2}{3}$$
The area enclosed by the curve $$y=\sqrt{(4-x^2)}, y\geq \sqrt{2}\sin\left(\dfrac{x\pi}{2\sqrt{2}}\right)$$ and x-axis is divided by y-axis in the ratio.
  • $$\dfrac{\pi^2-8}{\pi^2+8}$$
  • $$\dfrac{\pi^2-4}{\pi^2+4}$$
  • $$\dfrac{\pi -4}{\pi +4}$$
  • $$\dfrac{2\pi^2}{\pi^2+2\pi -8}$$
If $$k=2$$ then $$f\left(x\right)$$ attains point of inflection at
  • $$0$$
  • $$\sqrt{2}$$
  • $$-\sqrt{2}$$
  • None of these
Area bounded by $$|x-1| \le 2$$ and $$x^{2}-y^{2}=1$$, is
  • $$6 \sqrt{2}+\dfrac{1}{2}$$ In $$|3+2\sqrt{2}|$$
  • $$6 \sqrt{2}+\dfrac{1}{2}$$ In $$|3-2\sqrt{2}|$$
  • $$6 \sqrt{2}-$$ In $$|3+2\sqrt{2}|$$
  • $$none\ of\ these$$
Consider the two curves 
$${ C }_{ 1 } :{ y }^{ 2 }=4x $$
$$ { C }_{ 2 } : { x }^{ 2  }+ { y }^{ 2 } - 6x + 1 = 0$$
Then, the area of region between these curves?
  • $$\dfrac{20}{3}-2\pi$$
  • $$\dfrac{10}{3}-2\pi$$
  • $$\dfrac{20}{3}-\pi$$
  • $$\dfrac{10}{3}-\pi$$
The area enclosed between the curve $$y=x^3$$ and $$y=\sqrt{x}$$ is 
  • $$\dfrac{5}{3}$$
  • $$\dfrac{5}{4}$$
  • $$\dfrac{5}{12}$$
  • None of these
The area between the curves y=tan x, cot x and axis in the interval $$\left[0,\pi   \right/2$$]is ?
  • log $$2$$
  • log $$3$$
  • log $$5$$
  • none of these
The area bounded by the curves $$y = \sin \left( {x - \left[ x \right]} \right),\,y = \sin 1$$ and the x-axis is
  • $$\sin 1$$
  • $$1 - \sin 1$$
  • $$1 + \sin 1$$
  • None of these
The area (in square units) bounded by the curves $$y = {\cos ^{ - 1}}\left| {\cos \,x} \right|$$ and $$y = {\left( {{{\cos }^{ - 1}}\left| {\cos \,x} \right|} \right)^2},x \in \left[ {0,\pi } \right]$$ is
  • $$\frac{4}{3} + \frac{{{\pi ^2}}}{4}\left( {\frac{\pi }{3} - 1} \right)$$
  • $$\frac{4}{3} + \frac{{{\pi ^2}}}{4}\left( {\frac{\pi }{3} + 1} \right)$$
  • $$\frac{2}{3} + \frac{{{\pi ^2}}}{4}\left( {\frac{\pi }{3} - 1} \right)$$
  • $$\frac{2}{3} + \frac{{{\pi ^2}}}{4}\left( {\frac{\pi }{3} + 1} \right)$$
The area bounded by the curves $$y = sin^{-1} |sin \, x| $$ and $$y = (sin^{-1} | sin \, x|)^2 , \, 0 \le x \le 2 \pi$$ is
  • $$\left(\dfrac{\pi^3}{3} + \dfrac{4}{3} \right)$$ sq. unit
  • $$\left(\dfrac{\pi^3}{6} - \dfrac{\pi^2}{2} + \dfrac{4}{3} \right)$$ sq. unit
  • $$\left(\dfrac{\pi^2}{2} - \dfrac{4}{3} \right)$$ sq. unit
  • $$\left(\dfrac{\pi^2}{6} - \dfrac{\pi}{4} + \dfrac{4}{3} \right)$$ sq. unit
The area bounded by the curves $${y^2} = 4x$$ and $${x^2} = 4y$$ is : 
  • $$\frac{{32}}{3}$$
  • $$\frac{{16}}{3}$$
  • $$\frac{8}{3}$$
  • $$0$$
The area bounded by $$y=2-\left| 2-x \right|$$ and $$y=\frac { 3 }{ \left| x \right|  }$$ is :
  • $$\frac { 4+3\ell n3 }{ 2 } $$
  • $$\frac { 4-3\ell n3 }{ 2 } $$
  • $$\frac { 3 }{ 2 } +\ell n3$$
  • $$\frac { 1 }{ 2 } +\ell n3$$
Area of the region defined by $$1\ \le |x|+|y|$$ and $$x^{2}-2x+1 \le 1-y^{2}$$ is $$k \pi$$ then $$k=.....sq$$ units 
  • $$\dfrac {3}{4}$$
  • $$\dfrac {7}{6}$$
  • $$\dfrac {128}{5}$$
  • $$\dfrac {10}{3}$$
Area bounded by the curves $$y=\log _{ e }{ x } \quad$$ and  $$y={ \left( \log _{ e }{ x }  \right)  }^{ 2 }$$ is ?
  • $$e-2$$
  • $$3-e$$
  • $$e$$
  • $$e-1$$
The maximum area bounded by the curves $${y^2} = 4ax,\,\,\,\,y = ax\,\,a$$ and $$y = \frac{x}{a}\,\,,1 \le a \le 2$$  is 
  • $$ 44 sq. units $$
  • $$ 74 sq. units $$
  • $$84 sq.units $$
  • $$ 114 sq. units $$
The area bounded by the curves $$y=xe^{x},y=xe^{-x}$$ and the line $$x=1$$, is
  • $$\dfrac {2}{e}$$
  • $$1-\dfrac {2}{e}$$
  • $$\dfrac {1}{e}$$
  • $$1-\dfrac {1}{e}$$
The area (in sq.units) of the region $$\left\{ ( x , y ) :{ y} ^ { 2 } \ge 2 x\right.$$ and $${x} ^ { 2 } +{ y} ^ { 2 } \le 4 x , x \ge 0 , y \ge 0$$ is 
  • $$\pi - \dfrac { 8 } { 3 }$$
  • $$\pi - \dfrac { 4 \sqrt { 2 } } { 3 }$$
  • $$\dfrac { \pi } { 2 } - \dfrac { 2 \sqrt { 2 } } { 3 }$$
  • $$\pi - \dfrac { 4 } { 3 }$$
The area bounded by the curves $$\sqrt{x}+\sqrt{y}=1$$ and $${x}+{y}=1$$ is ?
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{5}{6}$$
  • $$\dfrac{1}{4}$$
In a system of three curves $$C_{1}, C_{2}$$ and $$C_{3}, C_{1}$$ is a circle whose equation is $$x^{2}+y^{2}=4$$. $$C_{2}$$ is the locus of orthogonal tangents drawn on $$C_{1}. C_{3}$$ is the intersection of perpendicular tangents drawn on $$C_{2}$$. Area enclosed between the curve $$C_{2}$$ and $$C_{3}$$ is-
  • $$8\pi\ sq.\ units$$
  • $$16\pi\ sq.\ units$$
  • $$32\pi\ sq.\ units$$
  • $$None\ of\ these$$
Area bounded between the curves $$y=\sqrt{4-x^2}$$ and $$y^2=3|x|$$ is/are?
  • $$\dfrac{\pi -1}{\sqrt{3}}$$
  • $$\dfrac{2\pi -1}{3\sqrt{3}}$$
  • $$\dfrac{2\pi -\sqrt{3}}{3}$$
  • $$\dfrac{2\pi -\sqrt{3}}{3\sqrt{3}}$$
Area bounded by the curves $$y=\cos^{-1}(\sin x)$$ and $$y=\sin^{-1}(\sin x)$$ in the interval $$[0, \pi]$$ is 
  • $$\dfrac{\pi^{2}}{16}$$
  • $$\dfrac{\pi^{2}}{32}$$
  • $$\dfrac{\pi^{2}}{4}$$
  • $$\dfrac{\pi^{2}}{8}$$
Area bounded between asymptomes of curves $$f(x)$$ and $$f^{-1}(x)$$ is 
  • $$4$$
  • $$9$$
  • $$16$$
  • $$25$$
The area of the region bounded by the X-axis and the curves defined by $$y=tanx\left( \dfrac { -\pi  }{ 3 } \le x\le \dfrac { \pi  }{ 3 }  \right) and\quad y=cotx\left( \dfrac { \pi  }{ 6 } \le x\le \dfrac { 3\pi  }{ 2 }  \right) $$
  • $$log\dfrac { 3 }{ 2 } $$
  • $$log\sqrt { \dfrac { 3 }{ 2 } } $$
  • $$2log\dfrac { 3 }{ 2 } $$
  • $$log\left( \dfrac { 3 }{ \sqrt { 2 } } \right) $$
The area bounded by the curves is $$\sqrt{\left|x\right|}+\sqrt{\left|y\right|}=\sqrt{a}$$ and $$x^{2}+y^{2}=a^{2}$$ (where $$a>0$$) is 
  • $$\left(\pi-\dfrac{2}{3}\right)a^{2}\ sq\ units$$
  • $$\left(\pi+\dfrac{2}{3}\right)a^{2}\ sq\ units$$
  • $$\left(\pi+\dfrac{2}{3}\right)a^{3}\ sq\ units$$
  • $$\left(\pi-\dfrac{2}{3}\right)a^{3}\ sq\ units$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers