Processing math: 27%

CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 13 - MCQExams.com

Area bounded by y|y|x|x|=1, y|y|+x|x|=1 and y=|x| is
  • π2
  • π
  • π4
  • None of these
The area bounded by the curve y=x+sinx and its inverse function between the ordinates x=0 and x=2π is 
  • 8π sq unit
  • 4π sq unit
  • 8 sq unit
  • None of these
The area enclosed between the curves y=|x3| and x=y3 is 
  • 12
  • 14
  • 18
  • 116
Area bounded by the loop of the curve x(x+y2)=x3y2 equals
  • π2
  • 1π4
  • 2π2
  • π
The area of the region enclosed by y=x32x2+2 and y=3x+2 is 
  • 716
  • 14
  • 393
  • 713
The area of region {(x,y):x2+y21x+y} is:
  • π25sq. unit
  • π22sq. unit
  • π24sq. unit
  • (π412)sq. unit
The area bounded by the curves y=xex,y=xex and the line x=1, is
  • 2e
  • 12e
  • 1e
  • 11e
The area (in sq. units)of the region
{xR:x0,y0,yx2andyx}, is:
  • 133
  • 83
  • 103
  • 53
The area between the curve y=4+3xx2 and xaxis is
  • 125/6
  • 125/3
  • 125/
  • None
Find area of region represented by 3x+4y>12,4x+3y>12 and x+y<4.
  • 267=87
  • 2+67=87
  • 2+67=78
  • 67=78
The area of the region bounded by the curves  y=exlogx  and  y=logxex  is
  • e454e
  • e4+54e
  • e354e
  • 5e
The area (in square units) of the region described by A=(x,y):yx25x+4,x+y1,y0 is
  • 196
  • 176
  • 72
  • 136
The area of the closed figure bounded by y=x,y=x& the tangent to the curve y=x25 at the point (3,2) is:
  • 5
  • 152
  • 10
  • 352
Area of the contained between the parabola x2=4y and the curve y=8x2+4 is 2πK then K=
  • 23
  • 43
  • 83
  • 13
The area bounded by y2=2x+1 and xy1=0 is
  • 4/3
  • 8/3
  • 16/3
  • None of these
The area (in sq. units) of the region bounded by the curve,  12 y = 36 - x ^ { 2 }  and the tangents drawn to it at the points,where the curve intersects the  x-axis, is :
  • 18
  • 27
  • 6
  • 12
The area enclosed by the curves  y-\sin  x+\cos  x  and  y-\left| \cos  x-\sin  x \right|   over the interval  \{ 0 , \pi / 2 \}   is given as  2\sqrt { a } ( \sqrt { b } - c )  where  a  and  b  are prime number then the value of  a,b  and  c  respectively.
  • ( 2,2,1 )
  • ( 2,2,-1 )
  • ( 3,2,-1 )
  • none of these
The area enclosed by the curve \left[x+3y\right]=\left[x-2\right] where x\epsilon\left[3,4\right) is (where [.] denotes greatest integer function.)
  • \dfrac{2}{3}
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • 1
Area bounded by the parabola { x }^{ 2 }=36y and its latus rectum is 
  • 116
  • 616
  • 216
  • 126
Area of region bounded by [x]^2=[y]^2 if x\in [1,5] where [.] represents the greatest integer function is-
  • 10sq.units
  • 8sq.units
  • 6sq.units
  • 5sq.units
If \left[ \begin{array} { c c c } { 4 a ^ { 2 } } & { 4 a } & { 1 } \\ { 4 b ^ { 2 } } & { 4 b } & { 1 } \\ { 4 c ^ { 2 } } & { 4 c } & { 1 } \end{array} \right] \left[ \begin{array} { c } { f ( - 1 ) } \\ { f ( 1 ) } \\ { f ( 2 ) } \end{array} \right] = \left[ \begin{array} { c } { 3 a ^ { 2 } + 3 a } \\ { 3 b ^ { 2 } + 3 b } \\ { 3 c ^ { 2 } + 3 c } \end{array} \right]  f ( x )  is a quadratic function and its maximum value occurs at a point  V. A  is a point of intersection of  y = f ( x )  with  x -axis and point  B  is such that chord  AB  subtends a right angled at  V .  Find The area enclosed by  f ( x )  and chord  A B .
  • \dfrac { 125 } { 3 } sq unit
  • \dfrac { 115 } { 3 } sq unit
  • \dfrac { 120 } { 3 } sq unit
  • \dfrac { 130 } { 3 } sq unit
If the area between the curves y=kx2 and x=ky2 is 1 
then k is 

  • 1/\sqrt { 2 }
  • 1/\sqrt { 3 }
  • 1/\sqrt { 4 }
  • 1
The area of the figure bounded by the curves \displaystyle y = lnx and y = (lnx)^2 is
  • e + 1
  • e-1
  • 3-  e
  • 1
The area of the region:
A = \left\{ {\left( {x,y} \right)} \right\}:0\underline  <  y\underline  <  \left| x \right| + 1\,\,{\text{and}}\,\,\left. { - 1\underline  <  x\underline  <  1} \right\} in sq. units, is
  • \frac{2}{3}
  • 2
  • \frac{4}{3}
  • \frac{1}{3}
The area between the parabola { y }^{ 2 }=4x, normal at one end of latusreetum and X-axis sin sq. units is
  • \frac { 1 }{ 3 }
  • \frac { 2 }{ 3 }
  • \frac { 10 }{ 3 }
  • \frac { 4 }{ 3 }
Area bounded by Curve { y }^{ 2 }=4x,y axis and line y=3 is : 
  • 7/4 Sq.unit
  • 9/4 Sq. unit
  • 5/4 Sq. unit
  • 11/4 Sq. unit
If { A }_{ n } is the area bounded by y=x and y={ x }^{ n },n\epsilon N, then { A }_{}.{ A }_{ 3 }...{ A }_{ n }=
  • \dfrac { 1 }{ n\left( n+1 \right) }
  • \frac { 1 }{ { 2 }^{ n }n\left( n+1 \right) }
  • \frac { 1 }{ { 2 }^{ n-1 }n\left( n+1 \right) }
  • \frac { 1 }{ { 2 }^{ n-2 }n\left( n+1 \right) }
The area of the region x+y\le 6, x^2+y^2\le 6y and y^2\le 8x is
  • \cfrac{1}{72}(27\pi - 5) sq.units
  • \cfrac{1}{12}(27\pi +2) sq.units
  • \cfrac{1}{12}(27\pi -2) sq.units
  • none of these
The area (in sq units) of the region \left\{ {\left( {x,y} \right):x \geqslant 0,x + y \leqslant 3,{x^2} \leqslant 4y\,\,and\,\,y \leqslant 1 + \sqrt x } \right\} is 
  • 59 / 12
  • 3 / 2
  • 7 / 3
  • 5 / 2
The area of the region A = \{ ( x , y ) : 0 \leq y \leq x | + 1 \text { and } - 1 \leq x \leq 1 \} in sq. units, is:
  • \frac { 4 } { 3 }
  • \frac { 2 } { 3 }
  • \frac { 1 } { 3 }
  • 2
Area of the region enclosed between the curves x={ y }^{ 2 }-1 and x=|y|\sqrt { 1-{ y }^{ 2 } } is 
  • 1 sq. units
  • \dfrac{4}{3} sq. units
  • \dfrac{2}{3} sq. units
  • 2 sq. units
R=((x,y):|x|\le |y|\quad and\quad { x }^{ 2 }+{ y }^{ 2 }\le 1)is
  • \dfrac { 3\pi }{ 8 } s.q.units
  • \dfrac { \pi }{ 8 } s.q.units
  • \dfrac { 5\pi }{ 8 } s.q.units
  • \dfrac { \pi }{ 2 } s.q.units
Area enclosed by |x-1|+|y+1|=1.
  • 2
  • 4
  • 1
  • 8
The area of the figure bounded by the curves y=|x-1| and y=3-|x| is-
  • 4
  • 2
  • 3
  • 1
Area enclosed by the graph of the function y=l{ n }^{ 2 }x-1 lying in the { 4 }^{ th } quadrant is
  • \frac { 2 }{ e }
  • \frac { 4 }{ e }
  • 2(e+\frac { 1 }{ e } )
  • 4(e-\frac { 1 }{ e } )
The area of the region bounded by the curve x=\sin ^{-1}y, the x-axis and the line |x|=1 is
  • 2-2\cos 1
  • 1-\cos 1
  • 1-2\cos 1
  • none of these
The area enclosed within the curve is \left| x \right| + \left| y \right| = 1 is
  • \sqrt 2
  • 1
  • \sqrt 3
  • 2
The area of the region bounded by the curve
x={ y }^{ 2 }-2\quad and\quad x=y\quad is
  • \frac { 9 }{ 4 }
  • 9
  • \frac { 9 }{ 2 }
  • \frac { 9 }{ 7 }
The area bounded by the curve y=\begin{cases} x^{ 2 };x<0 \\ x;x\ge 0 \end{cases} and the line y=4 is 
  • \cfrac{20}{41}
  • \cfrac{20}{147}
  • \cfrac{40}{3}
  • \cfrac{20}{21}
 The area enclosed between the curve {x^2} + {y^2} = 16 and the coordinates axes in the first quadrant is 
  • \pi \,\,sq.\,\,units
  • 2\pi \,\,sq.\,\,units
  • 3\pi \,\,sq.\,\,units
  • 4\pi \,\,sq.\,\,units
y= f(x) is a function which satisfies -
(i)f(0)=0          (ii)f''(x)= f'(x) and         (iii) f'(0)=1
then the area bounded by the graph of y = f(x), the lines x=0,x-1=0 and y+1=0 is -
  • e
  • e-2
  • e-1
  • e+1
The area of region bounded by  x = 0,2 x - 3 y = - 6  and  2 x + 3 y = 18  is
  • 2 square unit
  • 4 square unit
  • 6 square unit
  • 9 square unit
  • None of these
Area of the region bounded by curves y=x log x and y={ 2x-x }^{ 2 } is
  • 1/12
  • 7/12
  • 5/12
  • none of these
Area of the region bounded by the curve ( y - x ) ^ { 2 } = x ^ { 3 } and the line x = 1 is
  • \frac {5} {4}
  • \frac {3} {4}
  • \frac {4} {5}
  • \frac {4} {3}
Area enclosed by the curve y = f ( x ) defined parametrical as x = \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , y = \frac { 2 t } { 1 + t ^ { 2 } }
  • \pi sq. units
  • \frac { \pi } { 2 } sq. units
  • \frac { 3 \pi } { 4 } sq. units
  • \frac { 3 \pi } { 2 } sq. units
The area (in sq units) of the region bounded by the curve y=\sqrt { x }  and the lines y=0,y=x-2, is 
  • \frac { 10 }{ 3 }
  • \frac { 8 }{ 3 }
  • \frac { 4 }{ 3 }
  • \frac { 16 }{ 3 }
The area bounded by the curve y={ x }^{ 3 }, x-axis and two ordinates x=1 to x=2 equal to 
  • 15/2 sq.unit
  • 15/4 sq.unit
  • 17/2 sq.unit
  • 17/4 sq.unit
The area enclosed between the curves   y = a x ^ { 2 }  and  x = a y ^ { 2 } ( a > 0 )  is  1 sq. unit, then the value of  a  is
  • \dfrac { 1 } { \sqrt { 3 } }
  • \dfrac { 1 } { 2 }
  • 1
  • \dfrac { 1 } { 3 }
Area bounded by curves   x=\sqrt{y-1}
and y=x+1 is -
  • \frac{1}{3} s q \cdot u n i t
  • \frac{8}{3} s q \cdot u n i t
  • \frac{1}{6} s q \cdot u n i t
  • 5sq.unit
The area of the region lying between the line x-y+2=0 and the curve x=\sqrt{y} is
  • 9
  • \dfrac {9}{2}
  • \dfrac {10}{3}
  • none
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers