Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 13 - MCQExams.com

Area bounded by y|y|x|x|=1, y|y|+x|x|=1 and y=|x| is
  • π2
  • π
  • π4
  • None of these
The area bounded by the curve y=x+sinx and its inverse function between the ordinates x=0 and x=2π is 
  • 8π sq unit
  • 4π sq unit
  • 8 sq unit
  • None of these
The area enclosed between the curves y=|x3| and x=y3 is 
  • 12
  • 14
  • 18
  • 116
Area bounded by the loop of the curve x(x+y2)=x3y2 equals
  • π2
  • 1π4
  • 2π2
  • π
The area of the region enclosed by y=x32x2+2 and y=3x+2 is 
  • 716
  • 14
  • 393
  • 713
The area of region {(x,y):x2+y21x+y} is:
  • π25sq. unit
  • π22sq. unit
  • π24sq. unit
  • (π412)sq. unit
The area bounded by the curves y=xex,y=xex and the line x=1, is
  • 2e
  • 12e
  • 1e
  • 11e
The area (in sq. units)of the region
{xR:x0,y0,yx2andyx}, is:
  • 133
  • 83
  • 103
  • 53
The area between the curve y=4+3xx2 and xaxis is
  • 125/6
  • 125/3
  • 125/
  • None
Find area of region represented by 3x+4y>12,4x+3y>12 and x+y<4.
  • 267=87
  • 2+67=87
  • 2+67=78
  • 67=78
The area of the region bounded by the curves  y=exlogx  and  y=logxex  is
  • e454e
  • e4+54e
  • e354e
  • 5e
The area (in square units) of the region described by A=(x,y):yx25x+4,x+y1,y0 is
  • 196
  • 176
  • 72
  • 136
The area of the closed figure bounded by y=x,y=x& the tangent to the curve y=x25 at the point (3,2) is:
  • 5
  • 152
  • 10
  • 352
Area of the contained between the parabola x2=4y and the curve y=8x2+4 is 2πK then K=
  • 23
  • 43
  • 83
  • 13
The area bounded by y2=2x+1 and xy1=0 is
  • 4/3
  • 8/3
  • 16/3
  • None of these
The area (in sq. units) of the region bounded by the curve,  12y=36x2  and the tangents drawn to it at the points,where the curve intersects the  x-axis, is :
  • 18
  • 27
  • 6
  • 12
The area enclosed by the curves  ysinx+cosx  and  y|cosxsinx|  over the interval  {0,π/2}   is given as  2a(bc)  where  a  and  b  are prime number then the value of  a,b  and  c  respectively.
  • (2,2,1)
  • (2,2,1)
  • (3,2,1)
  • none of these
The area enclosed by the curve [x+3y]=[x2] where xϵ[3,4) is (where [.] denotes greatest integer function.)
  • 23
  • 13
  • 14
  • 1
Area bounded by the parabola x2=36y and its latus rectum is 
  • 116
  • 616
  • 216
  • 126
Area of region bounded by [x]2=[y]2 if x[1,5] where [.] represents the greatest integer function is-
  • 10sq.units
  • 8sq.units
  • 6sq.units
  • 5sq.units
If [4a24a14b24b14c24c1][f(1)f(1)f(2)]=[3a2+3a3b2+3b3c2+3c]  f(x)  is a quadratic function and its maximum value occurs at a point  V.A  is a point of intersection of  y=f(x)  with  x -axis and point  B  is such that chord  AB  subtends a right angled at  V.  Find The area enclosed by  f(x)  and chord  AB.
  • 1253 sq unit
  • 1153 sq unit
  • 1203 sq unit
  • 1303 sq unit
If the area between the curves y=kx2 and x=ky2 is 1 
then k is 

  • 1/\sqrt { 2 }
  • 1/\sqrt { 3 }
  • 1/\sqrt { 4 }
  • 1
The area of the figure bounded by the curves y=lnx and y = (lnx)2 is
  • e + 1
  • e-1
  • 3-  e
  • 1
The area of the region:
A={(x,y)}:0<_y<_|x|+1and1<_x<_1} in sq. units, is
  • 23
  • 2
  • 43
  • 13
The area between the parabola y2=4x, normal at one end of latusreetum and X-axis sin sq. units is
  • 13
  • 23
  • 103
  • 43
Area bounded by Curve y2=4x,y axis and line y=3 is : 
  • 7/4 Sq.unit
  • 9/4 Sq. unit
  • 5/4 Sq. unit
  • 11/4 Sq. unit
If An is the area bounded by y=x and y=xn,nϵN, then A.A3...An=
  • 1n(n+1)
  • 12nn(n+1)
  • 12n1n(n+1)
  • 12n2n(n+1)
The area of the region x+y6, x2+y26y and y28x is
  • 172(27π5) sq.units
  • 112(27π+2) sq.units
  • 112(27π2) sq.units
  • none of these
The area (in sq units) of the region {(x,y):x0,x+y3,x24yandy1+x} is 
  • 59 / 12
  • 3 / 2
  • 7 / 3
  • 5 / 2
The area of the region A={(x,y):0yx|+1 and 1x1} in sq. units, is:
  • 43
  • 23
  • 13
  • 2
Area of the region enclosed between the curves x=y21 and x=|y|1y2 is 
  • 1 sq. units
  • 43 sq. units
  • 23 sq. units
  • 2 sq. units
R=((x,y):|x||y|andx2+y21)is
  • 3π8s.q.units
  • π8s.q.units
  • 5π8s.q.units
  • π2s.q.units
Area enclosed by |x1|+|y+1|=1.
  • 2
  • 4
  • 1
  • 8
The area of the figure bounded by the curves y=|x1| and y=3|x| is-
  • 4
  • 2
  • 3
  • 1
Area enclosed by the graph of the function y=ln2x1 lying in the 4th quadrant is
  • 2e
  • 4e
  • 2(e+1e)
  • 4(e1e)
The area of the region bounded by the curve x=sin1y, the x-axis and the line |x|=1 is
  • 22cos1
  • 1cos1
  • 12cos1
  • none of these
The area enclosed within the curve is |x|+|y|=1 is
  • 2
  • 1
  • 3
  • 2
The area of the region bounded by the curve
x=y22andx=yis
  • 94
  • 9
  • 92
  • 97
The area bounded by the curve y={x2;x<0x;x0 and the line y=4 is 
  • 2041
  • 20147
  • 403
  • 2021
 The area enclosed between the curve x2+y2=16 and the coordinates axes in the first quadrant is 
  • πsq.units
  • 2πsq.units
  • 3πsq.units
  • 4πsq.units
y= f(x) is a function which satisfies -
(i)f(0)=0          (ii)f''(x)= f'(x) and         (iii) f'(0)=1
then the area bounded by the graph of y = f(x), the lines x=0,x-1=0 and y+1=0 is -
  • e
  • e-2
  • e-1
  • e+1
The area of region bounded by  x=0,2x3y=6  and  2x+3y=18  is
  • 2 square unit
  • 4 square unit
  • 6 square unit
  • 9 square unit
  • None of these
Area of the region bounded by curves y=x log x and y=2xx2 is
  • 1/12
  • 7/12
  • 5/12
  • none of these
Area of the region bounded by the curve (yx)2=x3 and the line x=1 is
  • 54
  • 34
  • 45
  • 43
Area enclosed by the curve y=f(x) defined parametrical as x=1t21+t2,y=2t1+t2
  • π sq. units
  • π2 sq. units
  • 3π4 sq. units
  • 3π2 sq. units
The area (in sq units) of the region bounded by the curve y=x and the lines y=0,y=x2, is 
  • 103
  • 83
  • 43
  • 163
The area bounded by the curve y=x3, x-axis and two ordinates x=1 to x=2 equal to 
  • 15/2 sq.unit
  • 15/4 sq.unit
  • 17/2 sq.unit
  • 17/4 sq.unit
The area enclosed between the curves   y=ax2  and  x=ay2(a>0)  is  1 sq. unit, then the value of  a  is
  • 13
  • 12
  • 1
  • 13
Area bounded by curves x=y1
and y=x+1 is -
  • 13squnit
  • 83squnit
  • 16squnit
  • 5sq.unit
The area of the region lying between the line xy+2=0 and the curve x=y is
  • 9
  • 92
  • 103
  • none
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers