Explanation
Step - 1: Drawing a graph
y = |x - 1|
⇒ y = 1 - x if x < 1 and x - 1 if x⩾1
y = 3 - |x|
⇒ y = 3 + x if x < 0 and 3 - x if x⩾0
Step - 2: Calculating area under the curve
Required area =A=
0∫ - 1((3 + x) - (1 - x)) dx + 1∫0((3 - x) - (1 - x)) dx + 2∫1((3 - x) - (x - 1)) dx
⇒ A = 0∫ - 1(3 + x - 1 + x) dx + 1∫0(3 - x - 1 + x) dx + 2∫1(3 - x - x + 1) dx
⇒ A = 0∫ - 1(2 + 2x) dx + 1∫02 dx + 2∫1(4 - 2x) dx
⇒ A = [2x + 2x22]0 - 1 + [2x]10 + [4x - 2x22]21
⇒ A = [2x + x2]0 - 1 + [2x]10 + [4x - x2]21
⇒ A = [0 - ( - 2 + 1)] + [2 - 0] + [(8 - 4) - (4 - 1)]
⇒ A = 4 sq. units
Hence option C is correct
Please disable the adBlock and continue. Thank you.