Explanation
So, area of the shaded region -\overset{2\sqrt{2}a}{\underset{0}{\int}}x^2/4a\:dx+\overset{2\sqrt{2}a}{\underset{0}{\int}}(2a)\:dx 2a(2\sqrt{2a})-\dfrac{}{4a}\dfrac{x^3}{3}|_{0}^{2\sqrt{2a}} =4\sqrt{2}a^2-\dfrac{(2^{3/2}a)^3}{4a\times 3} 4\sqrt{2}a^2-\dfrac{2\times2\sqrt{2}a^2}{3} =\dfrac{16\sqrt{2}a^2}{3}sq\:units.
x=y^{2} and the line y=x-6 area in QI+ area in QIV |\overset {3 }{ \underset { -2}{ \int } } [(y+6)-y^2]dy| =|\left | \dfrac{y^2}{2} +6y-y^3/3\right |_{-2}^{3} =\left |\dfrac{9}{2} -\dfrac{4}{2}+6(5)-\left [ \dfrac{27}{3} +8/3\right ] \right | \left | \dfrac{5}{2}+30-\left [ \dfrac{35}{3} \right ] \right | = \dfrac{15+180-70}{6} = \dfrac{125}{6}sq\:units.
Given curves are y^2=8x and y=2x Let's find out their intersection point
\Rightarrow 4x^{2}=8x
\Rightarrow x^{2}-2x=0
\Rightarrow x(x-2)=0
\Rightarrow x=0,2
The required area is A=\displaystyle \overset{2}{\underset{0}{\int}}(\sqrt{8x}-2x)dx =\displaystyle \overset{2}{\underset{0}{\int}}\sqrt{8x}\:dx-\overset{2}{\underset{0}{\int}}2x\:dx =\sqrt{8}\times\dfrac{2}{3}\times [x^{3/2}]_{0}^{2}-[x^2]_{0}^{2} =\dfrac{2\sqrt{8}}{3}\sqrt{8}-4 =\dfrac{16}{3}-4=\dfrac{4}{3}\:sq\:units
I: \left ( \dfrac{x}{2} \right )^2+\left ( \dfrac{y}{3} \right )^2=1 Area=\pi \times 2 \times3 =6\pi sq\:units. I \left ( \dfrac{x}{2} \right )^2+\left ( \dfrac{y}{2} \right )^2=1 \Rightarrow x^2+y^2=4 \pi (2)^2 =4\pi\:sq\:units.
Please disable the adBlock and continue. Thank you.