Processing math: 1%

CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 2 - MCQExams.com

What is the area of the region enclosed between the curve y2=2x and the straight line y=x ?
  • 23 square units
  • 43 square units
  • 13 square units
  • 1 square unit

The area bounded by the parabola y=x^{2} and the straight line \mathrm{y}=2\mathrm{x} is
  • \displaystyle \frac{4}{3} sq. units
  • \displaystyle \frac{3}{4} sq. units
  • \displaystyle \frac{2}{3} sq. units
  • \displaystyle \frac{1}{3} sq. units
The area bounded by the two parabolas y^{2}=8x and x^{2}=8y is
  • 64 sq. units
  • \displaystyle \frac{64}{3} sq, units
  • \displaystyle \frac{32}{3} sq. units
  • \displaystyle \frac{1}{3} sq. units
The area of the region bounded by the curve y=x^{2}+1 and y=2x-2 between {x}=-1 and {x}=2 is:
  • 9sq. units
  • 12sq. units
  • 15sq. units
  • 14sq. units
The area between the curve y^{2}=9x and the line y=3x is
  • \displaystyle \frac{1}{3} sq. units
  • \displaystyle \frac{8}{3} sq. units
  • \displaystyle \frac{1}{2} sq, units
  • \displaystyle \frac{1}{5} sq. units
The area of the region bounded by 3x\pm 4y\pm 6=0 in sq. units is
  • 3
  • 1.5
  • 4.5
  • 6
The area of the smaller part of the circle { x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }, cut off by the line \displaystyle x=\frac { a }{ \sqrt { 2 }  } , is given by:
  • \displaystyle \frac { { a }^{ 2 } }{ 2 } \left( \frac { \pi }{ 2 } +1 \right)
  • \displaystyle \frac { { a }^{ 2 } }{ 2 } \left( \frac { \pi }{ 2 } -1 \right)
  • \displaystyle { a }^{ 2 }\left( \frac { \pi }{ 2 } -1 \right)
  • None of these
The area bounded by the parabola y^{2}=4x and its latusrectum is:
  • \displaystyle \frac{8}{3} sq. units
  • \displaystyle \frac{3}{8} sq. units
  • 12 sq. units
  • \displaystyle \frac{1}{3} sq. units
The area of the curve x=a\cos^{3}t,y=b\sin^{3}t in sq. units is :
  • \displaystyle \frac{3\pi ab}{4}
  • \displaystyle \frac{3\pi ab}{8}
  • \displaystyle \frac{\pi ab}{4}
  • \displaystyle \frac{\pi ab}{8}
Area of the region R=\{[(x,y)/x^{2}\leq y\leq x]\} is
  • 1/6
  • 2/3
  • 4/3
  • 2
Area of the region bounded by x=|y+4| and \mathrm{y} axis is sq. units
  • 4
  • 8
  • 16
  • 32
The area of the region between the curves y=x^{2} and y=x^{3} is
  • \displaystyle \frac{1}{12} sq. units
  • \displaystyle \frac{1}{3} sq. units
  • \displaystyle \frac{1}{4} sq. units
  • \displaystyle \frac{1}{2} sq. units
AOB is the positive quadrant of the ellipse \displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 where \mathrm{O}\mathrm{A}={a},\ {O}\mathrm{B}={b}. Then area between the arc \mathrm{A}\mathrm{B} and chord \mathrm{A}\mathrm{B} of the ellipse is
  • \pi\ ab
  • (\pi-2)ab
  • \displaystyle \frac{ab(\pi+2)}{2}
  • \displaystyle \frac{ab(\pi-2)}{4}

The area enclosed between y=\sin 2x,y=\sqrt{3}\sin x between x=0 and x=\displaystyle \frac{\pi}{6} is
  • \displaystyle \frac{7}{4}-\sqrt{3} sq. units
  • \displaystyle \frac{7}{4}+\sqrt{3} sq. units
  • \displaystyle \frac{7\sqrt{3}}{4} sq, units
  • 7-\displaystyle \frac{\sqrt{3}}{4} sq. units
Area of the region \{(x,y)/x^{2}+y^{2}\leq 1\leq x+y\} is:
  • \displaystyle \frac{\pi}{4}+\frac{1}{2}
  • \displaystyle \frac{\pi}{4}-\frac{1}{2}
  • \displaystyle \frac{\pi}{4}+\frac{3}{4}
  • \pi+1
The area bounded by the curves y=\cos x,y=\cos 2x between the ordinates x=0,x=\displaystyle \frac{\pi}{3} are in the ratio
  • 2\sqrt{3}:4-\sqrt{3}
  • 2: 1
  • 2\sqrt{3}:4+\sqrt{3}
  • 1: 3
The area bounded by y=3x and y=x^{2} is (in square units)
  • 10
  • 5
  • 4.5
  • 9
The area bounded by the two curves y=\sin x,\ y=\cos x and the \mathrm{X}-axis in the first quadrant \left[0,\displaystyle \frac{\pi}{2}\right] is
  • 2-\sqrt{2} sq. units
  • 2+\sqrt{2} sq,. units
  • 2(\sqrt{2}-1) sq. units
  • 4 sq. units
The area bounded by y^{2}=4ax and y=mx is \displaystyle \frac{a^{2}}{3} sq. units then \mathrm{m}
  • 1
  • 2
  • 3
  • 4
Area of the segment cut off from the parabola x^{2}=8y by the line x-2y+8=0 is:
  • 12
  • 24
  • 48
  • 36
Area bounded by y=\sqrt{a^{2}-x^{2}},\ x+y=0 and \mathrm{y}-axis in sq. units is:
  • a^{2}(\displaystyle \frac{\pi}{2})
  • a^{2}(\displaystyle \frac{\pi}{4})
  • a^{2}(\displaystyle \frac{\pi}{8})
  • a^{2}\pi

Area ofthe region bounded by y=|x| and \mathrm{y}=2 is 
  • 4 sq units
  • 2 sq. units
  • 1 sq. units
  • \displaystyle \frac{1}{2} sq. units
The area of a region bounded by \mathrm{X}-axis and the curves defined by y=\tan x ,  0\displaystyle \leq x\leq\frac{\pi}{4} and y=\displaystyle \cot x,\frac{\pi}{4}\leq x\leq\frac{\pi}{2} is:
  • log3 sq. unlts
  • log5 sq. unlts
  • log 1 sq. unit
  • log 2 sq. units

The area bounded by y=\cos x,\ y=x+1 and y=0 in the second quadrant is
  • \displaystyle \frac{3}{2} sq. units
  • 2 sq. units
  • 1 sq. unit
  • \displaystyle \frac{1}{2} sq,. units
The area bounded by tangent, normal and x-axis at \mathrm{P}(2,4) to the curve y=x^{2}
  • 34
  • 32
  • 36
  • 24
Area of the region bounded by y=|x| and y=1-|x| is
  • \displaystyle \frac{1}{3} sq. units
  • 1 sq. units
  • \displaystyle \frac{1}{2} sq. unit
  • 2 sq. units
The area in square units bounded by the curves y=x^{3},\ y=x^{2} and the ordinates {x}=1, {x}=2 is
  • \displaystyle \frac{17}{12}
  • \displaystyle \frac{12}{13}
  • \displaystyle \frac{2}{7}
  • \displaystyle \frac{7}{2}
The area, in square units of the region bounded by the parabolas y^{2}=4x and x^{2}=4y is
  • \dfrac{16}{3}
  • \dfrac{32}{3}
  • \dfrac{8}{3}
  • \dfrac{4}{3}
The area bounded by the two curves y=\sqrt{x} and  x=\sqrt{y} is:
  • \displaystyle \frac{1}{3} sq, units
  • \displaystyle \frac{2}{3} sq. units
  • \displaystyle \frac{1}{5} sq. units
  • \displaystyle \frac{1}{7} sq. units
The area of the region bounded by x^{2}=8y,\ x=4 and the \mathrm{x}-axis is
  • \displaystyle \frac{2}{3}
  • \displaystyle \frac{4}{3}
  • \displaystyle \frac{8}{3}
  • \displaystyle \frac{10}{3}
The area bounded by the parabola x^{2}=4ay,\ \mathrm{x}-axis and the straight line \mathrm{y}=2\mathrm{a} is:
  • 16\sqrt{2}a^{2} sq. units
  • \displaystyle \frac{16\sqrt{2}}{3}a^{2} sq. units
  • \displaystyle \frac{32\sqrt{2}}{3}a^{2} sq. units
  • \displaystyle \frac{32\sqrt{2}}{5}a^{2} sq. units

Area of the figure bounded by Y-axis, y=Sin^{-1}x,\ y=Cos^{-1}x and the first point of intersection from the origin is
  • 2\sqrt{2}
  • 2\sqrt{2}+1
  • \sqrt{2}-1
  • \sqrt{2}+1

The area bounded by the parabola x=y^{2} and the line y=x-6 is
  • \displaystyle \frac{125}{3} sq. units
  • \displaystyle \frac{125}{6} sq. units
  • \displaystyle \frac{125}{4} sq. units
  • \displaystyle \frac{115}{3} sq. units
The area of the region bounded by y=x,\ y=x^{3} is:
  • \displaystyle \frac{1}{4} sq. units
  • \displaystyle \frac{1}{12} sq. units
  • \displaystyle \frac{1}{3} sq. units
  • \displaystyle \frac{1}{2} sq. units
The area bounded by the curve y^{2}=x and the line \mathrm{x}=4 is:
  • \displaystyle \frac{32}{3} sq. units
  • \displaystyle \frac{16}{3} sq. units
  • \displaystyle \frac{8}{3} sq. units
  • \displaystyle \frac{4}{3} sq. units
The area between the curve y=x^{2} and y=x+2 is:
  • \displaystyle \frac{9}{2} sq. units
  • \displaystyle \frac{3}{2} sq. units
  • 9 sq. units
  • 6 sq. units
The area of the region between the curve y=4x^{2} and the line y=6x-2 is:
  • \displaystyle \frac{1}{9} sq. units
  • \displaystyle \frac{1}{12} sq. units
  • \displaystyle \frac{3}{2} sq. units
  • \displaystyle \frac{1}{5} sq. units
The area bounded by the parabola y^{2}=4x and the line y=2x-4:
  • 9 sq. units
  • 5 sq. units
  • 4 sq. units
  • 2 sq. units
The area bounded by the line \mathrm{x}=1 and the curve \sqrt{\dfrac{y}{x}}+\sqrt{\dfrac{x}{y}}=4 is
  • 2\sqrt{3}
  • \sqrt{3}
  • 3\sqrt{2}
  • 4\sqrt{3}
Area of the region enclosed by y^{2}=8x and {y}=2{x} is
  • \dfrac{4}{3}
  • \dfrac{3}{4}
  • \dfrac{1}{4}
  • \dfrac{1}{2}
The area between the curves y=\sqrt{x} and y=x^{3} is
  • \displaystyle \frac{1}{12} sq. units
  • \displaystyle \frac{5}{12} sq. units
  • \displaystyle \frac{3}{5} sq. units
  • \displaystyle \frac{4}{5} sq. units
The area bounded by the curves y=\sin x,y= cosx and the \mathrm{y}-axis and the first point of intersection is:
  • \sqrt{2} sq,.units
  • \sqrt{2}-1 sq. units
  • 2+\sqrt{2} sq. units
  • 0 sq, units
Assertion(A): The area bounded by y^{2}=4x and x^{2}=4y is \displaystyle \frac{16}{3} sq. units.

Reason(R): The area bounded by y^{2}=4ax and x^{2}=4ay is \displaystyle \frac{16a^2}{3} sq. units
  • Both A and R are true and R is the correct explanation of A.
  • Both A and R are true but R is not the correct explanation of A.
  • A is true but R is false.
  • A is false but R is true.
I : The area bounded by x=2\cos\theta,\  y=3\sin\theta is 36\pi sq. units.
II: The area bounded by x=2\cos\theta,\  y=2\sin\theta is 4\pi sq.units.
Which of the above statement is correct?
  • Only I
  • Only II
  • Both I and II
  • Neither I nor II.
The area of the triangle formed by the positive X-axis and the normal and tangent to the circle x^{2}+y^{2}=4 at (1,\sqrt{3}) in sq. units is:
  • \sqrt{3}
  • \displaystyle \frac{1}{\sqrt{3}}
  • 2\sqrt{3}
  • 3\sqrt{3}

The area between the curves y=\tan x,y=\cot x and \mathrm{x}-axis (0\displaystyle \leq x\leq\frac{\pi}{2}) is
  • \log 2
  • 2 \log 2
  • \displaystyle \frac{1}{2} \log2
  • 1
I: The area bounded by the line \mathrm{y}=\mathrm{x} and the curve y=x^{3} is 1/_{2} sq. units.
II: The area bounded by the curves y=x^{3} and y=x^{2}and the ordinates x=1, x=2 is \frac{7}{12} sq. units.
Which of the above statement is correct?
  • Only I
  • Only II
  • Both I and II
  • Neither I nor II.
Assertion(A): The area bounded by y^{2}=4x and y=x is \displaystyle \frac{8}{3} sq. units.

Reason(R): The area bounded by y^{2}=4ax and y=mx is \displaystyle \frac{8a^{2}}{3m^{3}} sq. units.
  • Both A and R are true and R is the correct explanation of A.
  • Both A and R are true but R is not the correct explanation of A.
  • A is true but R is false.
  • A is false but R is true.

The area of the region bounded by y=\tan x and tangent at x=\displaystyle \frac{\pi}{4} and the \mathrm{x}-axis is
  • \displaystyle \log\sqrt{2}-\frac{\pi}{4}+\dfrac{{\pi}^2}{16} sq. units
  • \displaystyle \log\sqrt{2}+\frac{1}{4} sq. units
  • \log\sqrt{2}
  • log 2
Area bounded by \displaystyle \mathrm{f}(\mathrm{x})=\max.(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x},\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{x}) \displaystyle \forall 0\leq x\leq\frac{\pi}{2} and the co-ordinate axis is equal to:
  • \displaystyle \frac{1}{\sqrt{2}} sq.units
  • \sqrt{2} sq.units
  • 2 sq.units
  • 1 sq. unit
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers