Explanation
So, area of the shaded region −2√2a∫0x2/4adx+2√2a∫0(2a)dx 2a(2√2a)−4ax33|2√2a0 =4√2a2−(23/2a)34a×3 4√2a2−2×2√2a23 =16√2a23squnits.
x=y2 and the line y=x−6 area in QI+ area in QIV |3∫−2[(y+6)−y2]dy| =||y22+6y−y3/3|3−2 =|92−42+6(5)−[273+8/3]| |52+30−[353]|=15+180−706=1256squnits.
Given curves are y2=8x and y=2x Let's find out their intersection point
⇒4x2=8x
⇒x2−2x=0
⇒x(x−2)=0
⇒x=0,2
The required area is A=2∫0(√8x−2x)dx =2∫0√8xdx−2∫02xdx =√8×23×[x3/2]20−[x2]20 =2√83√8−4 =163−4=43squnits
I: (x2)2+(y3)2=1 Area=π×2×3 =6πsqunits. I (x2)2+(y2)2=1 ⇒x2+y2=4 π(2)2 =4πsqunits.
Please disable the adBlock and continue. Thank you.