Explanation
The graph of y=\sin x is shown in image.
A=\int_{0} ^{2\pi}\bigg(\sin x\bigg)
A=\int_{0} ^{\pi}\bigg(\sin x\bigg)+\int_{\pi} ^{2\pi}\bigg(\sin x\bigg)
Since, \Bigg|\int_{0} ^{\pi}\bigg(\sin x\bigg)\Bigg| =\Bigg|\int_{0} ^{2\pi}\bigg(\sin x\bigg)\Bigg|
Hence, A=2\Bigg(\int_{0} ^{\pi}\bigg(\sin x\bigg) \Bigg)
A=-2\bigg[\cos x\bigg]\Bigg|^0_{\pi}
A=2\times 2
A=4 sq. unit
\textbf{Step-1: Finding the bounded Area}
\text{On plotting these curves we can easily see area bounded by them}
\textbf{Step-2: And Area bounded by them is given as}
\Rightarrow 2\int\limits_{0}^{1}{[(2-{{x}^{2}})-{{x}^{2}}]}dx
\Rightarrow 2\int\limits_{0}^{1}{[2-2{{x}^{2}}]}dx
\Rightarrow 2\times \left| 2x-\dfrac{2{{x}^{3}}}{3} \right|_{0}^{1}
\Rightarrow 2\left[ \left( 2-\dfrac{2}{3} \right)-0 \right]
\Rightarrow \dfrac{8}{3}
\textbf{Therefore, area bounded by these curves is (A) } \mathbf {\dfrac{8}{3}}
Please disable the adBlock and continue. Thank you.