Processing math: 19%

CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 7 - MCQExams.com

Find area bounded by curves {(x,y):yx2andy=∣x}
  • 53
  • 12
  • 13
  • 19
The area enclosed between the curves y2=x and y=|x| is
  • 12
  • 16
  • 18
  • 116
Find the area bounded by the curve y=sinx with x-axis between  x=0 to x = 2π.
  • 4 sq. unit
  • 8 s q . unit
  • 4π4 sq. unit
  • 8π4 sq. unit
The area enclosed between the curve y=|x|3 and x=y3 is
  • 12
  • 14
  • 18
  • 116
The area between the curves y=x2 and y=21+x2 is-
  • π13
  • π2
  • π23
  • π+23
If the area enclosed between y=mx2 and x=ny2 is 13 sq. units, then m,n can be roots of (where m,n are non zero real numbers)
  • 2x2+5x+1=0
  • 2x2+3x2=0
  • 2x2+3x+2=0
  • 2x2+5x1=0
In the given figure, a square OABC has been inscribed in the quadrant OPBQ. If OA=20cm then the area of the shaded region is [takeπ=3.14]
1168351_05db577288cb4de3b938a97f0b42ea5a.png
  • 214cm2
  • 228cm2
  • 222cm2
  • 242cm2
The area bounded by y=x^2,x=y^2 is
  • 1
  • \dfrac 16
  • \dfrac 34
  • None\ of\ these
The area of the plane region bounded by the curve x + 2 y ^ { 2 } = 0 and x + 3 y ^ { 2 } = 1 is equal to:
  • -\dfrac{4}{3}
  • \dfrac{4}{3}
  • \dfrac{2}{3}
  • None of these
The angle between the curves y=sin x and y=cos x is : 
  • tan^{-1}(2\sqrt{2})
  • tan^{-1}(3\sqrt{2})
  • tan^{-1}(3\sqrt{3})
  • tan^{-1}(5\sqrt{2})
The area bounded by |x|=1-y^{2} and |x|+|y|=1 is
  • \dfrac{1}{3}
  • \dfrac{1}{2}
  • \dfrac{2}{3}
  • 1
The area bounded by the curve y=\cos x and y=\sin x between the ordinates x=0 and x=\dfrac {3\pi}{2} is
  • 4\sqrt {2}+2
  • 4\sqrt {2}-1
  • 4\sqrt {2}+1
  • 4\sqrt {2}-2
The area bounded by \dfrac { | x | } { a } + \dfrac { | y | } { b } = 1 where a > 0 and b > 0 is
  • \dfrac { 1 } { 2 } a b
  • ab
  • 2ab
  • 4ab
Area bounded by the curve y = \sin ^ { - 1 } x , y - a x i s and y = \cos ^ { - 1 } x is equal to
  • ( 2 + \sqrt { 2 } ) sq. unit
  • ( 2 - \sqrt { 2 } ) sq. unit
  • ( 1 + \sqrt { 2 } ) sq. unit
  • ( \sqrt { 2 } - 1 ) sq. unit
The area of the figure bounded by the parabola x = - 2 y ^ { 2 } \text { and } x = 1 - 3 y ^ { 2 } is ?
  • 1 / 6
  • 2/3
  • 3/2
  • 4/3
Area bounded by y=x^2and line y=x
  • 2/3
  • 1/6
  • 1/3
  • 1/4
The area bounded by the curve y=(x+1)^2,y=(x-1)^2 and the line y=0 is
  • \dfrac{1}{6}
  • \dfrac{2}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{3}
Area common to the cutve y=\sqrt {9-x^{2}} and x^{2}-y^{2}=6x is:
  • \dfrac {\pi +\sqrt {3}}{4}
  • \dfrac {\pi -\sqrt {3}}{4}
  • 3\left(\pi +\dfrac {\sqrt {3}}{4}\right)
  • None\ of\ these
The area enclosed by the curves y=x^{2},y=x^{3},x=0 and x=p, where p > 1, is \dfrac{1}{6}. then p equals 
  • 8/3
  • 16/3
  • 4/3
  • 2
The area (in sq units) of the region \{ (x,y):{ y }^{ 2 }\ge 2x and { x }^{ 2 }+{ y }^{ 2 }\le 4x ,\chi \ge 0, Y\ge 0\} 
  • \pi -\frac { 4 }{ 3 }
  • \pi -\frac { 8 }{ 3 }
  • \pi -\frac { 4\sqrt { 2 } }{ 3 }
  • -\frac { 2\sqrt { 2 } }{ 3 }
Let f\left( x \right) be a non-negative continuous function such that the area bounded by the curve y= f\left( x \right) , x-axis and the ordinates x=\cfrac { \pi  }{ 4 } , x=\beta >\cfrac { \pi  }{ 4 } is \left( \beta \sin { \beta  } +\cfrac { \pi  }{ 4 } \cos { \beta  } +\sqrt { 2 } \beta -\cfrac { \pi  }{ 2 }  \right) . Then f\left( \cfrac { \pi  }{ 2 }  \right) is
  • \left( 1-\dfrac { \pi }{ 4 } -\sqrt { 2 } \right)
  • \left( 1-\dfrac { \pi }{ 4 } +\sqrt { 2 } \right)
  • \left( \cfrac { \pi }{ 4 } +\sqrt { 2 } -1 \right)
  • \left( \cfrac { \pi }{ 4 } -\sqrt { 2 } +1 \right)
The area bounded by the curve xy^{2}=1 and the lines x=1, x=2 is
  • 4\left( {\sqrt 2 - 1} \right)
  • 4\left( {\sqrt 2 + 1} \right)
  • 2\left( {\sqrt 2 - 1} \right)
  • 2\left( {\sqrt 2 + 1} \right)
The area bounded by the curves y=\sqrt{-x} and x=-\sqrt{-y}, where x,y\le0, is equal to
  • \dfrac{2}{3}sq. unit
  • \dfrac{1}{3}sq. unit
  • \dfrac{1}{2}sq. unit
  • Cannot\ be\ determined
The area of (in sq. units ) of the region described by A={(x,y): x^2+y^2 \leq 1\ and\ y^2 \leq 1-x }
  • \dfrac{\pi}{2}+\dfrac{4}{3}
  • \dfrac{\pi}{2}-\dfrac{4}{3}
  • \dfrac{\pi}{2}-\dfrac{2}{3}
  • \dfrac{\pi}{2}+\dfrac{2}{3}
The area of the region bounded by the curves y=|x-1| and y=3-|x| is?
  • 2 sq. units
  • 3 sq. units
  • 4 sq. units
  • 6 sq. units
The area enclosed between the curves {y^2} = x and y = |x|\;is
  • \dfrac {2}{3}
  • 1
  • \dfrac {1}{6}
  • \dfrac {1}{3}
Let T be the triangle with vertices \left (0,0\right), \left (0,{c}^{2}\right)\ and \left (c,{c}^{2}\right) and let R be the region between y=cx and y={x}^{2}\ where c>0 then 
  • Area \left( R \right) =\dfrac { { c }^{ 3 } }{ 6 }
  • Area of R=\dfrac {e^{x}}3{3}
  • \lim_{c \rightarrow 0}\dfrac {Area(T)}{Area(R)}=3
  • \lim_{c \rightarrow 0}\dfrac {Area(T)}{Area(R)}=\dfrac {3}{2}
The area of the figure bounded by the curves y ^ { 2 } = 2 x + 1 and x - y - 1 = 0 is 
  • \dfrac {2}{3}
  • \dfrac {4}{3}
  • \dfrac {8}{3}
  • \dfrac {16}{3}
The area common to the parabola y=2{ x }^{ 2 }\quad and \quad y={ x }^{ 2 }+4
  • \dfrac { 2 }{ 3 } sq.\quad units\quad
  • \dfrac { 3 }{ 2 } sq.\quad units\quad
  • \dfrac { 32 }{ 3 } sq.\quad units\quad
  • none of these.
The are boundede by the curve y=x^{2},y=-x and y^{2}=4x-3 is k, them the value of 9k is
  • 2
  • 3
  • 0
  • 4
If area bounded by to curves y^2 = 4ax and y=mx is \dfrac{a^2}{3}, then the value of m is 
  • 2
  • -1
  • \dfrac{1}{2}
  • none of these
The area bounded by curves 3 x^2 + 5 y= 32 and y = |x-2| is
  • 25
  • 33/2
  • 17/2
  • 33
The area of the plane region bounded by the curves x+{ 2y }^{ 2 }=0 and x+{ 3y }^{ 2 }=1 is equal to 
  • \cfrac { 5 }{ 3 } sq.unit
  • \cfrac { 1 }{ 3 } sq.unit
  • \cfrac { 2 }{ 3 } sq.unit
  • \cfrac { 4 }{ 3 } sq.unit
The area bounded by the curves y=x(x-3)^{2} and y=x is (in sq.units) is
  • 28
  • 32
  • 4
  • 8
The area enclosed by the curves xy^{2}=a^{2}(a-x) and (a-x)y^{2}=a^{2}x is
  • (\pi-2)a^{2}\ sq.units
  • (4-\pi)a^{2}\ sq.units
  • (\pi a^{2}/3\ sq.units
  • \dfrac{\pi+a^{2}}{4}\ sq.units
The area (in sq.units) of the region described by \left\{(x,y):y^{2}\le 2x\ and\ y\ge 4x-1\right\} is 
  • \dfrac{15}{64}
  • \dfrac{9}{32}
  • \dfrac{7}{32}
  • \dfrac{5}{64}
The area of the region bounded by the curves  y = \sin x  and  y = \cos x ,  and lying between the lines  x = \dfrac { \pi } { 4 }  and  x = \dfrac { 5 \pi } { 4 } ,  is
  • 2 + \sqrt { 2 }
  • 2
  • 2 \sqrt { 2 }
  • 2 - \sqrt { 2 }
The area bounded by the curves y = \log _ { e } x and y = \left( \log _ { e } x \right) ^ { 2 } is
  • 3 - e
  • e-3
  • \frac { 1 } { 2 } ( 3 - e )
  • \frac { 1 } { 2 } ( e - 3 )
The area bounded by the curves y=x(x-3)^{2} and y=x is (in sq.units) is
  • 28
  • 32
  • 4
  • 8
Area bounded by y=2x^{2} and y=\dfrac{4}{(1+x^{2})} will be (in sq units)
  • (2\pi+4/3)
  • (2\pi-4/3)
  • 4/3-2\tan^{-1}2+\pi/2
  • 4/3-8\tan^{-1}2+2\pi
The area enclosed between the curve y=\log_{e}\left(x+e\right) and the coordinate axes is
  • 1
  • 2
  • 3
  • 4
If a curve y = a \sqrt { x } + bx passes through the point ( 1,2 ) and the area bounded by the curve, line x = 4 and x axis is 8 square units, then 
  • a = 3 , b = - 1
  • a = 3 , b = 1
  • a = - 3 , b = 1
  • a = - 3 , b = - 1
The area bounded by the circle x^{2}+y^{2}=8, the parabola x^{2}=2y and the line y=x in first quadrant is \dfrac{2}{3}+k\pi, where k=
  • \dfrac{5}{7}
  • 2
  • \dfrac{3}{5}
  • 3
The area of the region bounded by the curves  1-y^{2}= \left | x \right | and \left | x \right |+\left | y \right |= 1   is 
  • \frac{1}{3}sq. unit
  • \frac{2}{3}sq. unit
  • \frac{4}{3}sq. unit
  • 1 sq.unit
The region in the xy - plane is bounded by curve y=\sqrt {(25-x^2)} and the line y=0. If the point (a,a+1) lies in the interior of the region, then 
  • a \in \left( { - 4,3} \right)
  • a \in (- \infty, -1) \cup (3, \infty)
  • a \in (-1,3)
  • None of these
The area of the region formed by { x }^{ 2 }+{ y }^{ 2 }-6x-4y+12\le 0,y\le x\quad and\quad x\quad \le \quad \dfrac { 5 }{ 2 } is
  • \frac { \pi }{ 6 } -\frac { \sqrt { 3}+1  }{ 8 }
  • \frac { \pi }{ 6 } +\frac { \sqrt { 3}+1  }{ 8 }
  • \frac { \pi }{ 6 } -\frac { \sqrt { 3}-1  }{ 8 }
  • none of these
Area of the region bounded by x^{2}+y^{2}-6y\leq 0 and 3y\leq x^{2} is
  • \frac{9\pi }{2}-12
  • \frac{9\pi }{4}-6
  • 9\pi-24
  • \frac{9\pi }{2}+6
The area enclosed by the curves y = cosx - sin x and y = [socx - sin x] and between x = 0 and x =\dfrac{\pi}{2} is 
  • 2(\sqrt{2} + 1) sq. units
  • 2(\sqrt{2} - 1) sq. units
  • (\sqrt{2} - 1) sq. units
  • (\sqrt{2} + 1) sq. units
The area (in sq. units) in the  first quadrant bounded by the parabola, y = x^2 + 1, the tangent to it at the point (2, 5) and the coordinate axes is:-
  • \dfrac{14}{3}
  • \dfrac{187}{24}
  • \dfrac{37}{24}
  • \dfrac{8}{3}
The area bounded by the parabola {{\text{y}}^{\text{2}}}{\text{ = 4}}\;{\text{ax}}\;{\text{and}}\;{{\text{x}}^{\text{2}}}\;{\text{ = }}\;{\text{4ay}}\; is
  • \dfrac{{8{a^2}}}{3}
  • \dfrac{{16{a^2}}}{3}
  • \dfrac{{32{a^2}}}{3}
  • \dfrac{{64{a^2}}}{3}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers