Processing math: 8%

CBSE Questions for Class 12 Commerce Applied Mathematics Applications Of Integrals Quiz 8 - MCQExams.com

The area of the region
A=[(x,y):0yx|x|+1 and 1x1] in sq . units is :
  • 23
  • 13
  • 2
  • 43
If the area enclosed between the curves y=kx2 and x=ky2, (k>0), is 1 square unit. Then k is?
  • 13
  • 23
  • 32
  • 3
The area ehclosed by the curves y = f(x) and  y =g(x), where f9x) = max x,x2 and g(x) = min x,x2 opver the interval [0,1] is 
  • 16
  • 13
  • 12
  • 1
The area of the region bounded by the parabolas y2=andx2=y,is
  • 13 q.units
  • 83 q.units
  • 163 q.units
  • 43 q.units
The area of the region  {(x,y):x2+y21x+y}  is
  • π25 unit 2
  • π22 unit 2
  • π23 unit 2
  • (π412) unit 2
The area of the region bounded by the parabola y = x2 3x with y 0 is
  • 3
  • 32
  • 92
  • 9
The area of the quadrilateral formed by the tangents at the endpoints of the latus recta to the ellipse, x29+y25=1 is 
  • 274
  • 18
  • 272
  • 27
The area (in sq. units) of the region  \{ { x },{ y }):{ y }^{ { 2 } }\geq 2{ x }  and  x ^ { 2 } + y ^ { 2 } \leq 4 x , x \geq 0 , y \geq 0 \}  is :
  • \pi - \dfrac { 4 \sqrt { 2 } } { 3 }
  • \dfrac { \pi } { 2 } - \dfrac { 2 \sqrt { 2 } } { 3 }
  • \pi - \dfrac { 4 } { 3 }
  • \pi - \dfrac { 8 } { 3 }
The area bounded by the curve y={ e }^{ x } and the lines y = |x - 1|, x = 2 is given by :
  • { e }^{ 2 }+1
  • 4{ e }^{ 2}-1
  • { e }^{ 2 }-2
  • e - 2
Area bounded by the curve y^2(2a-x)=x^3 and the line x=2a, is
  • 3\pi a^2
  • \dfrac {3\pi a^2}2
  • \dfrac {3\pi a^2}4
  • \dfrac {\pi a^2}4
Area bounded by the curve y= sin^{-1}x, y-axis and y = cos^{-1}x is equal to 
  • (2+\sqrt{2})
  • (2-\sqrt{2})
  • (1+\sqrt{2})
  • (\sqrt{2}-1)
The area bounded by the circles x^{2} + y^{2} = r^{2}, r = 1, 2 and the rays given by 2x^{2} - 3xy - 2y^{2} = 0, y > 0 is
  • \dfrac {\pi}{4} sq. units
  • \dfrac {\pi}{2} sq. units
  • \dfrac {3\pi}{4} sq. units
  • \pi\ sq. units
Area of the region bounded by y=\sin^{-1}{\left| \sin{x}\right|} and y=-\cos^{-1}{\left| \cos{x}\right|} in the interval [0,2\pi] is equal to 
  • \cfrac{\pi^2}{2}
  • \pi^2
  • \cfrac{\pi^2}{4}
  • 2\pi^2
The area bounding by y = 2 - |2 - x| and y = \frac { 3 }{ |x| }  is :
  • \frac { 4+3\ell n3 }{ 2 }
  • \frac { 4-3\ell n3 }{ 2 }
  • \frac { 3 }{ 2 } +\ell n3
  • \frac { 1 }{ 2 } +\ell n3
The area enclosed between the curves y=ax^2 and  x=ay^2(a>0) is 1 sq.unit, then the value of a is
  • 1/\sqrt{3}
  • 1/2
  • 1
  • 1/3
The area inside the parabola 5x^2-y=0 but outside the parabola 2x^2-y+9=0, is
  • 12\sqrt 3
  • 6\sqrt 3
  • 8\sqrt 3
  • 4\sqrt 3
The area of the figure bounded by the curves y=\ln nx & {(\ln nx)}^{2} is 
  • e+1
  • e-1
  • 3-e
  • 1
The area of the region bounded by x = 0, y = 0, x = 2, y = 2, y\le { e }^{ x } and y\ge \ell n x, is
  • 6 - 4 \ell n 2
  • 4 \ell n 2 - 2
  • 2 \ell n 2 - 4
  • 6 - 2 \ell n 2
The area is bounded by x+x_1, y=y_1 and y=-(x+1)^2. Where x_1, y_1 are the values of x, y satisfying the equation sin^{-1} x +sin^{-1} y = -\pi will be (nearer to origin)
  • 1/3
  • 3/2
  • 1
  • 2/3
The area bounded by curves y=\left|x\right|-1 and y=-\left|x\right|+1 is 
  • 1
  • 2
  • 3
  • 4
The area of the triangle formed by the lines joining the vertex of the parabola x^2 = 12y to the ends of its latus rectum is-
  • 16 sq. units
  • 12 sq. units
  • 18 sq. units
  • 24 sq. units
The area bounded by the curve y=x X-axis and the lines x=-1 and x=1 is
  • 0
  • \dfrac {1}{3}
  • \dfrac {2}{3}
  • \dfrac {4}{3}
The area enclosed between the curves y=log_e(x+e), x=log_e\left(\dfrac{1}{y}\right) and the x-axis is?
  • 2e
  • e
  • 4e
  • None of these
The area (in sq. units) bounded by the parabola y=x^{2}-1 , the tangent at the point (2,3) to it and the y-axis is:
  • \frac{14}{3}
  • \frac{56}{3}
  • \frac{8}{3}
  • \frac{32}{3}
The area bounded by the curve y \le x^2 + 3x , 0 \le y \le 4, \, 0 \le x \le 3 , is
  • \dfrac{59}{6}
  • \dfrac{57}{4}
  • \dfrac{59}{3}
  • \dfrac{57}{6}
The area of the region bounded by the curve y=\phi(x),y=0 and x=10 is
  • \dfrac {81}{4}
  • \dfrac {79}{4}
  • \dfrac {73}{4}
  • 19
Let f(x, y)=\{(x, y): y^2 \leq 4x, 0\leq x\leq \lambda\} and s(\lambda) is area such that \dfrac{S(\lambda)}{S(4)}=\dfrac{2}{5}. Find the value of \lambda.
  • 4\left(\dfrac{4}{25}\right)^{1/3}
  • 4\left(\dfrac{2}{25}\right)^{1/3}
  • 2\left(\dfrac{4}{25}\right)^{1/3}
  • 2\left(\dfrac{2}{25}\right)^{1/3}
If the area (in sq. units) of the region \{(x, y): y^2\le 4x, x+y\le 1, x\geq 0, y\ge 0 \} is a\sqrt{2}+b, then a-b is equal to?
  • \dfrac{8}{3}
  • \dfrac{10}{3}
  • 6
  • -\dfrac{2}{3}
Region formed by |x-y| \le 2 and |x + y| \le 2 is
  • Rhombus of side is 2
  • Square of area is 6
  • Rhombus of area is 8\sqrt{2}
  • Square of side is 2\sqrt{2}
The region represented by |x - y| \le 2 and |x + y| \le 2 is bounded by a:
  • Square of side length 2\sqrt{2} units
  • Rhombus of side length 2 units
  • Square of area 16 \,sq units
  • Rhombus of area 8\sqrt{2} sq. units
Area of the region bounded by the curve y = \cos x between x = 0 and x = \pi is
  • 1 sq. units
  • 4 sq. units
  • 2 sq. units
  • 3 sq. units
Let S(\alpha) = \{ (x, y) : y^2 \le x, 0 \le x \le \alpha\} and A(\alpha) is area of the region S(\alpha). If for a \lambda , 0 < \lambda < 4, A(\lambda) : A(4) = 2 : 5, then \lambda equals
  • 2\left(\dfrac{4}{25}\right)^{\frac{1}{3}}
  • 4\left(\dfrac{4}{25}\right)^{\frac{1}{3}}
  • 2\left(\dfrac{2}{5}\right)^{\frac{1}{3}}
  • 4\left(\dfrac{2}{5}\right)^{\frac{1}{3}}
The area (in sq. units) of the region A=\{(x, y):x^2\leq y\leq x+2\} is?
  • \dfrac{10}{3}
  • \dfrac{9}{2}
  • \dfrac{31}{6}
  • \dfrac{13}{6}
If the area enclosed by the curves { y }^{ 2 }=4\lambda x and y=\lambda x is \cfrac { 1 }{ 9 } square units then value of \lambda is
  • 24
  • 37
  • 48
  • 38
If the area (in sq. units) bounded by the parabola y^{2} = 4\lambda x and the line y = \lambda x, \lambda > 0, is \dfrac {1}{9}, then \lambda is equal to
  • 24
  • 48
  • 4\sqrt {3}
  • 2\sqrt {6}
The area (in sq. units) of the region bounded by the curves y={2}^{x} and y=\left| x+1 \right| , in the first quadrant is:
  • \cfrac { 3 }{ 2 } -\cfrac { 1 }{ \log _{ e }{ 2 } }
  • \cfrac { 1 }{ 2 }
  • \log _{ e }{ 2 } +\cfrac { 3 }{ 2 }
  • \cfrac { 3 }{ 2 }
Area of the region bounded by y^2\leq 4x, x+y\leq 1, x\geq 0, y\geq 0 is a\sqrt{2}+b, then value of a-b is?
  • 4
  • 6
  • 8
  • 12
The area bounded by the line y=x, x-axis and ordinates x=-1 and x=2 is?
  • \dfrac{3}{2}
  • \dfrac{5}{2}
  • 2
  • 3
The area of the region \left \{(x, y) : xy \leq 8, 1 \leq y\leq x^{2}\right \} is
  • 16\log_{6} 2 - 6
  • 8\log_{6} 2 - \dfrac {7}{3}
  • 16\log_{6} 2 - \dfrac {14}{3}
  • 8\log_{6} 2 - \dfrac {14}{3}
The area bounded by curve y=\sin { 2x } \left( x=0\quad to\quad x=\pi  \right) and X-axis is ______
  • 4
  • 2
  • 1
  • \cfrac { 3 }{ 2 }
The area (in sq. units) of the region \left\{ \left( x,y \right) \in { R }^{ 2 }:{ x }^{ 2 }\le y\le 3-2x \right\} , is:
  • \cfrac { 29 }{ 3 }
  • \cfrac { 34 }{ 3 }
  • \cfrac { 31 }{ 3 }
  • \cfrac { 32 }{ 3 }
The area bounded by y = \sin^2 x , x = \dfrac{\pi}{2} and x = \pi is 
  • \dfrac{\pi}{2}
  • \dfrac{pi}{4}
  • \dfrac{\pi}{8}
  • \dfrac{\pi}{16}
  • 2\pi
The area of the region bounded by the curve y=2x-x^2 and the line y=x is ________ square units.
  • \dfrac{1}{6}
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{7}{6}
Given f(x)=\begin{cases} x,0\le x<\dfrac { 1 }{ 2 }  \\ \dfrac { 1 }{ 2 } ,x=\dfrac { 1 }{ 2 }  \\ 1-x,\dfrac { 1 }{ 2 } <x\le 1 \end{cases} and g(x)=\left(x-\dfrac{1}{2}\right)^{2},x\epsilon R, Then the area (in sq.units) of the region bounded by the curves y=f(x) and y=g(x) between the lines 2x=1 and 2x=\sqrt{3}, is:
  • \dfrac{1}{3}+\dfrac{\sqrt{3}}{4}
  • \dfrac{1}{2}-\dfrac{\sqrt{3}}{4}
  • \dfrac{1}{2}+\dfrac{\sqrt{3}}{4}
  • \dfrac{\sqrt{3}}{4}-\dfrac{1}{3}
If the curve y=ax^{\frac{1}{2}} +bx passes through the point (1,2) and lies above the x-axis for 0 \leq x \leq 9 and the area enclosed by the curve, the x-axis and the line x=4 is 8 sq.units. Then
  • a=1
  • b=1
  • a=3
  • b=-1
The area of the region, enclosed by the circle x^2+y^2=2 which is not common to the region bounded by the parabola y^2=x and the straight line y=x, is:
  • \dfrac{1}{3}(15\pi-1)
  • \dfrac{1}{6}(24\pi-1)
  • \dfrac{1}{6}(12\pi-1)
  • \dfrac{1}{3}(6\pi-1)
The area (in sq. units) of the region \{(x, y) \in R^2 |4x^2 \le y \le 8x + 12\} is :
  • \dfrac{128}{3}
  • \dfrac{127}{3}
  • \dfrac{125}{3}
  • \dfrac{124}{3}
The area bounded by the curve y =x^2 +2x +1 and tangent at ( 1 , 4) and y -axis and 
  • \frac {2}{3} sq units
  • \frac {1}{3} sq units
  • 2 sq units
  • None of these
Area of the region bounded by the curve y =e^x, y=e^{-x} and the straight line x= 1 given by
  • e-e^{-1} +2
  • e-e^{-1} - 2
  • e+ e^{-1} -2
  • None of these
The area bounded by the curve y = (x) the x-axis and the ordinate x= 1 and x = b is (b- 1) cos ( 3b + 4), then f(x) is given by 
  • (x -1 ) sin (3x +4)
  • (x-1) sin (3x-4)
  • -3(x -1) sin ( 3x+ 4) + cos (3x+ 4)
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers