Explanation
$${\textbf{Step - 1: Draw the diagram}}{\text{.}}$$
$${\text{At first if we see two given circles , both have a center at (0,0)}}{\text{.}}$$
$${\text{Radius of 1st one, namely }}{{x}^2} + {{y}^2} = 1,{\text{ is 1}}{\text{.}}$$
$${\text{Radius of 2nd one, }}{{x}^2} + {{y}^2} = 4{\text{ , is 2}}{\text{.}}$$
$${\text{Given pair of lines}} \Rightarrow \sqrt 3 \left( {{{x}^2} + {{y}^2}} \right) = 4{xy}{\text{.}}$$
$$ \Rightarrow \left( {\sqrt 3 } \right){{x}^2} - 4{xy} + \left( {\sqrt 3 } \right){{y}^2} = 0$$
$$\sqrt 3 {{x}^2} - 3{xy} - {xy} + + \sqrt 3 {{y}^2} = 0$$
$$ \Rightarrow \left( {{x} - \sqrt 3 {y}} \right)\left( {\sqrt 3 {x} - {y}} \right).$$
$${\text{So two lines }x} - \sqrt 3 {y} = 0{\text{ and }}\sqrt 3 {x} - {y} = 0.$$
$${\textbf{Step - 2: Find angle between pair of lines}}{\textbf{.}}$$
$${\text{The standard equation of pair of lines is a}}{{x}^2} + 2{hxy} + {b}{{y}^2} = \left( {{x} + {my}} \right)\left( {{px} + {qy}} \right) = 0$$
$${\text{There the angles between them, is }}\theta = {\tan ^{ - 1}}\dfrac{{2\sqrt {{{x}^2} - {ab}} }}{{\left| {\left. {{a} + {b}} \right|} \right.}}$$
$$ \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{2}{{2\sqrt 3 }}$$
$$ \Rightarrow \theta = \dfrac{\pi }{6}$$
$${\textbf{Step - 3: Find the area}}{\textbf{.}}$$
$${\text{As per formula area of sectors of two circles is }}\dfrac{\theta }{{2\pi }} \times \pi \left( {{{\text{R}}^2} - {{r}^2}} \right)$$
$${\text{Here R}} = 2,{\text{ and }r} = 1{\text{, }}\theta = \dfrac{\pi }{6}$$
$${\text{So area}} = \dfrac{{\dfrac{\pi }{6}}}{{2\pi }} \times \pi \left( {{2^2} - {1^2}} \right)$$
$$ = \dfrac{\pi }{{6 \times 2}} \times \left( {4 - 1} \right)$$
$$ = \dfrac{{\pi \times 3}}{{6 \times 2}}$$
$$ = \dfrac{\pi }{4}$$
$${\textbf{Thus, the area bounded is }}\boldsymbol{\mathbf{\dfrac{\pi }{4}}{\textbf{ unit}}{^2}}{\text{ }}.$$
The shaded is the smaller part $$\overset{1}{\underset{0}{\int }}\sqrt{3}x\:dx+\overset{2}{\underset{1}{\int }}\sqrt{4-x^2}dx$$ $$\dfrac{\sqrt{3}x^2}{2}\left|_{0}^{1}+\left ( x/2\sqrt{4-x^2} +4/2\sin ^{-1}(x/2)\right ) \right|_{1}^{2} $$ $$\dfrac{\sqrt{3}}{2}+2\sin ^{-1}(1)-\dfrac{\sqrt{3}}{2}-2\sin ^{-1}(1/2)$$ $$2(\pi /2-\pi /6)$$ $$2\left ( \dfrac{3-1}{6} \right )\pi=\dfrac{2\pi }{3}sq\:units.$$
$$= \cfrac{16}{3}(4 \pi + \sqrt{3})$$
Please disable the adBlock and continue. Thank you.