CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 1 - MCQExams.com

Evaluate : $$\displaystyle\int^a_{-a}\sqrt{\dfrac{a-x}{a+x}}dx$$
  • $$a\pi$$
  • $$\dfrac{a\pi}{2}$$
  • $$2a\pi$$
  • None of these
The value of the definite integral $$\displaystyle\int^1_0\dfrac{xdx}{(x^2+16)}$$ lies in the interval $$[a, b]$$. Then smallest such interval is?
  • $$\left[0, \dfrac{1}{17}\right]$$
  • $$[0, 1]$$
  • $$\left[0, \dfrac{1}{27}\right]$$
  • None of these
Let $$F(x)=f(x)+f\left ( \dfrac{1}{x} \right )$$, where $$f(x)=\int_{l}^{x}\dfrac{logt}{l+t}dt$$. Then $$F(e)$$ equals
  • $$\dfrac{1}{2}$$
  • 0
  • 1
  • 2
The integral $$\displaystyle\int^{{\pi}/{4}}_{{\pi}/{12}}\frac{8\cos 2x}{(\tan x+\cot x)^3}dx$$ equals?
  • $$\displaystyle\frac{15}{128}$$
  • $$\displaystyle\frac{13}{32}$$
  • $$\displaystyle\frac{13}{256}$$
  • $$\displaystyle\frac{15}{64}$$
The value of $$\displaystyle \int_{0}^{1}\frac{8\log(1+\mathrm{x})}{1+\mathrm{x}^{2}}$$ dx is 

  • $$\pi \log 2$$
  • $$\displaystyle \frac{\pi}{8}\log 2$$
  • $$\displaystyle \frac{\pi}{2}\log 2$$
  • $$\log 2$$
The following integral $$\displaystyle \int_{\pi/4}^{\pi/2} (2 cosec  x)^{17}dx$$ is equal to
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u + e^{-u})^{16} du$$
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u + e^{-u})^{17} du$$
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u - e^{-u})^{17} du$$
  • $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u - e^{-u})^{16} du$$
The value of $$g\displaystyle \left ( \frac{1}{2} \right )$$ is?
  • $$\pi$$
  • $$2 \pi$$
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{\pi}{4}$$
$$\int _{ 0 }^{ \pi  }{ \cfrac { xdx }{ 4\cos ^{ 2 }{ x } +9\sin ^{ 2 }{ x }  }  } =$$
  • $$\cfrac { { \pi }^{ 2 } }{ 12 } $$
  • $$\cfrac { { \pi }^{ 2 } }{ 4 } $$
  • $$\cfrac { { \pi }^{ 2 } }{ 6 } $$
  • $$\cfrac { { \pi }^{ 2 } }{ 3 } $$
Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{1}{1+x^{2}}dx$$
  • $$\pi/4$$
  • $$\pi$$
  • $$\pi/3$$
  • $$0$$
$$\displaystyle \int _{ 0 }^{ 1 }{ \tan ^{ -1 }{ \left( \dfrac { 2x }{ 1-{ x }^{ 2 } }  \right) dx }  } =\dfrac{\pi}{a}-\ln a$$. Find $$a$$.
  • $$2$$
  • $$1$$
  • $$-1$$
  • None of these
 Find $$\displaystyle\int_0^\dfrac{\pi}{2}{cos^3}{x}\ dx$$ = 
  • $$\dfrac{2}{3}$$
  • $$2$$
  • $$1$$
  • $$-2$$
$$\displaystyle  \int _{ 0 }^{ 1 }{ \tan ^{ -1 }{ \left( \dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  }  \right)  } dx }$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{2}-1$$
  • $$0$$
  • None of these
If $$A= \int_{0}^{1} x^{50}(2-x)^{50} dx, B= \int_{0}^{1}x^{50}(1-x)^{50}dx$$, which of the following is true?
  • $$A=2^{50}B$$
  • $$A=2^{-50}B$$
  • $$A=2^{100}B$$
  • $$A=2^{-100}B$$
If $$A=\displaystyle \int_{0}^{1}{\dfrac{{e}^{t}}{1+t}}dt$$ then $$\displaystyle \int_{0}^{1}{{e}^{t}ln(1+t)}dt=$$
  • $$e\ ln{2}-A$$
  • $$e\ ln{2}+A$$
  • $$Ae\ ln{2}$$
  • $$A\ ln{2} $$
Evaluate the integral
$$\displaystyle \int_{1}^{e^{3}}\frac{dx}{x\sqrt{1+\ln x}}$$
  • $$2$$
  • $$2\sqrt{2}$$
  • $$\sqrt{2}$$
  • $$-2$$
$$\displaystyle \int_0^{\frac{\pi}{4}} {\cfrac{{{{\cos }^4}x - {{\sin }^4}x}}{{\sqrt {1 + \sin 2x} }}dx} =\sqrt 2$$
  • True
  • False
$$\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ x }.x }{ { \left( x+1 \right)  }^{ 2 } } dx= }$$
  • $$\dfrac{e}{2}$$
  • $$1+\dfrac{e}{2}$$
  • $$\dfrac{e}{2}-1$$
  • $$1-\dfrac{e}{2}$$
Find $$\int\limits_0^{\sqrt 2 } {\sqrt {2 - {x^2}} dx} $$
  • $$\frac{\pi }{2}$$
  • 8
  • 0
  • 2
$$\displaystyle \int_{0}^{1}{\dfrac{\tan^{-1}x}{x^2+1}}dx=$$
  • $$ \dfrac{{{\pi }^{2}}}{32} $$
  • $$ \dfrac{\pi}{16} $$
  • $$ \dfrac{{{\pi }^{2}}}{16} $$
  • $$ \dfrac{\pi }{32} $$
$$ \int_0^{ \pi /2 } \sin^5 x \cos ^6 x dx = $$
  • $$ \dfrac {8}{693} $$
  • $$ \dfrac {32}{693} $$
  • $$ \dfrac {8}{99} $$
  • $$ \dfrac {16}{63} $$
Evaluate $$\displaystyle\int^{3}_{2}3^{x}dx$$
  • $$\dfrac{1}{\ln 3}$$
  • $$\dfrac{8}{\ln 3}$$
  • $$\dfrac{18}{\ln 3}$$
  • None of these
$$\underset{0}{\overset{\pi}{\int}} xf (\sin \, x) dx =$$
  • $$\dfrac{\pi}{2}$$$$\underset{0}{\overset{\pi}{\int}} f (\sin \, x) dx$$
  • $$\pi \underset{0}{\overset{\frac{\pi}{2}}{\int}} f (\cos \, x ) dx$$
  • $$\pi \, \underset{0}{\overset{\pi}{\int}} f(\cos \, x) dx$$
  • $$\pi \, \underset{0}{\overset{\pi}{\int}} f (\sin \, x) dx$$
$$\displaystyle\int_0^{\pi /2} {\dfrac{{\sin x}}{{\sqrt {1 + {\mathop{\rm cosx}\nolimits} } }}} dx = $$
  • $$\sqrt 2 - 1$$
  • $$2\sqrt 2 $$
  • $$2(\sqrt 2 - 1)$$
  • $$\dfrac{{\sqrt 2 + 1}}{2}$$
The integral $$\displaystyle \int _{ \frac { x }{ 12 }  }^{ \frac { x }{ 4 }  }{ \frac { 8\cos { 2x }  }{ { \left( \tan { x } +\cot { x }  \right)  }^{ 3 } } dx } $$ is equal to
  • $$\dfrac {15}{128}$$
  • $$\dfrac {15}{64}$$
  • $$\dfrac {13}{32}$$
  • $$\dfrac {13}{256}$$
$$\displaystyle \int_{\pi /4}^{3\pi/4 }\dfrac{dx}{1+\cos x} $$ is equal to 
  • $$-2$$
  • $$2$$
  • $$4$$
  • $$-1$$
The integral $$\displaystyle \int_{0}^{\pi_/{3}}\frac{\cos x}{3+4\sin x}d_{X=}$$
  • $$\displaystyle \log\left(\frac{3+2\sqrt{3}}{3}\right)$$
  • $$\dfrac{1}{4} \log\left(\displaystyle \frac{3+2\sqrt{3}}{3}\right)$$
  • $$2\displaystyle \log\left(\frac{3+2\sqrt{3}}{3}\right)$$
  • $$\dfrac{1}{2}\log\left(\displaystyle \frac{3+2\sqrt{3}}{2}\right)$$
Evaluate the integral
$$\displaystyle \int_{0}^{\pi_/{2}}\frac{cosx}{1+sin^{2}x}dx $$
  • $$\pi$$
  • $$\pi/3$$
  • $$\pi/2$$
  • $$\pi/4$$

$$\displaystyle \int_{-1}^{3}\left( \tan^{ -1 }\frac { x }{ x^{ 2 }+1 } +\tan ^{ -1 } \frac { x^{ 2 }+1 }{ x }  \right) dx=$$
  • $$\pi$$
  • $$2\pi$$
  • $$4\pi$$
  • $$3\pi$$
If $$\displaystyle \int_{1/\sqrt{3}}^{k}\dfrac{1}{1+x^{2}}dx=$$ $$\dfrac{\pi}{6}$$ 
then the upper limit $$k=?$$
  • $$\sqrt{3}$$
  • $$\displaystyle \frac{1}{\sqrt{3}}$$
  • $$1$$
  • $$2+\sqrt{3} $$
The integral $$\displaystyle \int_{0}^{\pi/4}\frac{\sin^{9}x}{\cos^{11}x}dx=$$
  • $$10$$
  • $$5$$
  • $$\dfrac{1}{10}$$
  • $$\dfrac{1}{5}$$
$$\displaystyle \int_{0}^{1}\frac{4x^{3}}{\sqrt{1-x^{8}}}dx =?$$
  • $$\pi$$
  • $$-\pi$$
  • $$\pi /2$$
  • $$- \pi /2$$
Evaluate: $$\displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{1+x^{2}}dx$$
  • $$\displaystyle \frac{\pi^{2}}{4}$$
  • $$\displaystyle \frac{\pi^{2}}{18}$$
  • $$\displaystyle \frac{\pi^{2}}{32}$$
  • $$\displaystyle \frac{\pi^{2}}{8}-1$$
Evaluate: $$\displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}d{x}$$
  • $$\pi$$
  • $$\dfrac {\pi}{2}$$
  • $$\dfrac {\pi}{4}$$
  • $$\dfrac {\pi}{3}$$

$$\displaystyle \int_{0}^{\pi_/{2}}\frac{\cos x}{1+\sin x}d_{X=}$$
  • $$\log 2$$
  • $$\log \mathrm{e}$$
  • $$\dfrac{1}{2}$$ log3
  • $$0$$
The value of $$\int_{0}^{\infty} x.e^{-x^{2}}dx_{=}$$
  • $$1$$
  • $$- 1/2$$
  • $$1/2$$
  • $$0$$
$$\displaystyle \int_{0}^{1}\frac{x^{2}}{1+x^{2}}dx$$ equals
  • $$1-\displaystyle \frac{\pi}{4}$$
  • $$1-\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$

$$\displaystyle \int_{0}^{1}\frac{dx}{e^{x}+e^{-x}}=$$
  • $$tan^{-1}e$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$ta\displaystyle \mathrm{n}^{-1}\mathrm{e}-\frac{\pi}{4}$$
  • $$ta\displaystyle \mathrm{n}^{-1}\mathrm{e}+\frac{\pi}{4}$$

$$\displaystyle \int_{1}^{2}(\frac{1+x\log x}{x})e^{x}dx_{=}$$
  • $$\mathrm{e}^{2}$$ $$log2$$
  • $$elog2$$
  • $$\displaystyle \frac{1}{2}$$ log2
  • $$\displaystyle \frac{\mathrm{e}^{2}}{2}$$ log2
Evaluate the integral
$$\displaystyle \int_{\frac{\sqrt{2}}{3}}^{ \frac{\sqrt{3}}{3}}\displaystyle \frac{dx}{\sqrt{4-9x^{2}}}$$
  • $$\displaystyle \frac{\pi}{36}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$\displaystyle \frac{7\pi}{30}$$
$$\displaystyle \int_{0}^{\pi /2} \displaystyle \frac{1}{\sin x+\cos x} \ dx $$
  • $$\sqrt{2}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)$$
  • $$\sqrt{2}l\mathrm{o}\mathrm{g}(\sqrt{2}-1)$$
  • $$\dfrac{1}{\sqrt{2}}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)$$
  • $$\dfrac{-1}{\sqrt{2}}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)$$
Evaluate the integral
$$\displaystyle \int_{0}^{\pi_/{2}}\cos^{5}x.\sin 2xdx$$
  • $$2/7$$
  • $$1/7$$
  • $$-1/7$$
  • $$3/7$$
Evaluate the integral
$$\displaystyle \int_{\frac{a}{2}}^{a}\frac{1}{\sqrt{a^{2}-x^{2}}}dx$$
  • $$\dfrac{\pi}{2}$$
  • $$\pi a$$
  • $$\pi-1$$
  • $$\dfrac{\pi}{3}$$

$$\displaystyle \int_{0}^{\displaystyle \tfrac{\pi}{4}}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}dx=$$
  • $$\log 2$$
  • $$-\log\sqrt{2}$$
  • $$2\log 2$$
  • $$3\log\sqrt{2}$$
$$ \int_{\pi /4}^{\pi /2} Cotx.dx_{=}$$
  • 2 log 2
  • $$\displaystyle \frac{\pi}{2}$$ log2
  • $$\log\sqrt{2}$$
  • $$\log 2$$
Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}$$
  • $$0$$
  • $$-1$$
  • $$\pi/2$$
  • $$-\pi/2$$
Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{(\sin^{-1} {x})^{2}}{\sqrt{1-x^{2}}}dx $$
  • $$\displaystyle \frac{\pi^{3}}{24}$$
  • $$\pi^{2}$$
  • $$-\pi^{2}$$
  • $$0$$
Evaluate the integral
$$\displaystyle \int_{0}^{a}\sqrt{a^{2}-x^{2}}dx$$
  • $$\displaystyle \frac{a^{2}}{4}$$
  • $$\pi {a}^{2}$$
  • $$\displaystyle \frac{\pi a^{2}}{2}$$
  • $$\displaystyle \frac{\pi a^{2}}{4}$$
Evaluate the integral
$$\displaystyle \int_{1/2}^{1}\frac{1}{\sqrt{1-x^{2}}}dx$$
  • $$\pi$$
  • $$\pi/2$$
  • $$\pi/3$$
  • $$\pi/4$$

$$\displaystyle \int_{0}^{1}\sqrt{1-x^{2}}dx_{=}$$
  • $$1-\displaystyle \frac{\pi}{4}$$
  • $$1-\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$

$$\displaystyle \int_{0}^{a}\frac{1}{a^{2}+x^{2}}dx_{=}$$
  • $$\pi/2$$
  • $$\pi/3$$
  • $$\pi/4$$
  • $$\pi/4a$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers