Processing math: 24%

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 1 - MCQExams.com

Evaluate : aaaxa+xdx
  • aπ
  • aπ2
  • 2aπ
  • None of these
The value of the definite integral 10xdx(x2+16) lies in the interval [a,b]. Then smallest such interval is?
  • [0,117]
  • [0,1]
  • [0,127]
  • None of these
Let F(x)=f(x)+f(1x), where f(x)=xllogtl+tdt. Then F(e) equals
  • 12
  • 0
  • 1
  • 2
The integral π/4π/128cos2x(tanx+cotx)3dx equals?
  • 15128
  • 1332
  • 13256
  • 1564
The value of 108log(1+x)1+x2 dx is 

  • πlog2
  • π8log2
  • π2log2
  • log2
The following integral π/2π/4(2cosecx)17dx is equal to
  • log(1+2)02(eu+eu)16du
  • log(1+2)02(eu+eu)17du
  • log(1+2)02(eueu)17du
  • log(1+2)02(eueu)16du
The value of g(12) is?
  • π
  • 2π
  • π2
  • π4
π0xdx4cos2x+9sin2x=
  • π212
  • π24
  • π26
  • π23
Evaluate the integral
1011+x2dx
  • π/4
  • π
  • π/3
  • 0
10tan1(2x1x2)dx=πalna. Find a.
  • 2
  • 1
  • 1
  • None of these
 Find π20cos3x dx
  • 23
  • 2
  • 1
  • 2
10tan1(x1x2)dx
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{2}-1
  • 0
  • None of these
If A= \int_{0}^{1} x^{50}(2-x)^{50} dx, B= \int_{0}^{1}x^{50}(1-x)^{50}dx, which of the following is true?
  • A=2^{50}B
  • A=2^{-50}B
  • A=2^{100}B
  • A=2^{-100}B
If A=\displaystyle \int_{0}^{1}{\dfrac{{e}^{t}}{1+t}}dt then \displaystyle \int_{0}^{1}{{e}^{t}ln(1+t)}dt=
  • e\ ln{2}-A
  • e\ ln{2}+A
  • Ae\ ln{2}
  • A\ ln{2}
Evaluate the integral
\displaystyle \int_{1}^{e^{3}}\frac{dx}{x\sqrt{1+\ln x}}
  • 2
  • 2\sqrt{2}
  • \sqrt{2}
  • -2
\displaystyle \int_0^{\frac{\pi}{4}} {\cfrac{{{{\cos }^4}x - {{\sin }^4}x}}{{\sqrt {1 + \sin 2x} }}dx} =\sqrt 2
  • True
  • False
\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ x }.x }{ { \left( x+1 \right)  }^{ 2 } } dx= }
  • \dfrac{e}{2}
  • 1+\dfrac{e}{2}
  • \dfrac{e}{2}-1
  • 1-\dfrac{e}{2}
Find \int\limits_0^{\sqrt 2 } {\sqrt {2 - {x^2}} dx}
  • \frac{\pi }{2}
  • 8
  • 0
  • 2
\displaystyle \int_{0}^{1}{\dfrac{\tan^{-1}x}{x^2+1}}dx=
  • \dfrac{{{\pi }^{2}}}{32}
  • \dfrac{\pi}{16}
  • \dfrac{{{\pi }^{2}}}{16}
  • \dfrac{\pi }{32}
\int_0^{ \pi /2 } \sin^5 x \cos ^6 x dx =
  • \dfrac {8}{693}
  • \dfrac {32}{693}
  • \dfrac {8}{99}
  • \dfrac {16}{63}
Evaluate \displaystyle\int^{3}_{2}3^{x}dx
  • \dfrac{1}{\ln 3}
  • \dfrac{8}{\ln 3}
  • \dfrac{18}{\ln 3}
  • None of these
\underset{0}{\overset{\pi}{\int}} xf (\sin \, x) dx =
  • \dfrac{\pi}{2}\underset{0}{\overset{\pi}{\int}} f (\sin \, x) dx
  • \pi \underset{0}{\overset{\frac{\pi}{2}}{\int}} f (\cos \, x ) dx
  • \pi \, \underset{0}{\overset{\pi}{\int}} f(\cos \, x) dx
  • \pi \, \underset{0}{\overset{\pi}{\int}} f (\sin \, x) dx
\displaystyle\int_0^{\pi /2} {\dfrac{{\sin x}}{{\sqrt {1 + {\mathop{\rm cosx}\nolimits} } }}} dx =
  • \sqrt 2 - 1
  • 2\sqrt 2
  • 2(\sqrt 2 - 1)
  • \dfrac{{\sqrt 2 + 1}}{2}
The integral \displaystyle \int _{ \frac { x }{ 12 }  }^{ \frac { x }{ 4 }  }{ \frac { 8\cos { 2x }  }{ { \left( \tan { x } +\cot { x }  \right)  }^{ 3 } } dx }  is equal to
  • \dfrac {15}{128}
  • \dfrac {15}{64}
  • \dfrac {13}{32}
  • \dfrac {13}{256}
\displaystyle \int_{\pi /4}^{3\pi/4 }\dfrac{dx}{1+\cos x} is equal to 
  • -2
  • 2
  • 4
  • -1
The integral \displaystyle \int_{0}^{\pi_/{3}}\frac{\cos x}{3+4\sin x}d_{X=}
  • \displaystyle \log\left(\frac{3+2\sqrt{3}}{3}\right)
  • \dfrac{1}{4} \log\left(\displaystyle \frac{3+2\sqrt{3}}{3}\right)
  • 2\displaystyle \log\left(\frac{3+2\sqrt{3}}{3}\right)
  • \dfrac{1}{2}\log\left(\displaystyle \frac{3+2\sqrt{3}}{2}\right)
Evaluate the integral
\displaystyle \int_{0}^{\pi_/{2}}\frac{cosx}{1+sin^{2}x}dx
  • \pi
  • \pi/3
  • \pi/2
  • \pi/4

\displaystyle \int_{-1}^{3}\left( \tan^{ -1 }\frac { x }{ x^{ 2 }+1 } +\tan ^{ -1 } \frac { x^{ 2 }+1 }{ x }  \right) dx=
  • \pi
  • 2\pi
  • 4\pi
  • 3\pi
If \displaystyle \int_{1/\sqrt{3}}^{k}\dfrac{1}{1+x^{2}}dx= \dfrac{\pi}{6} 
then the upper limit k=?
  • \sqrt{3}
  • \displaystyle \frac{1}{\sqrt{3}}
  • 1
  • 2+\sqrt{3}
The integral \displaystyle \int_{0}^{\pi/4}\frac{\sin^{9}x}{\cos^{11}x}dx=
  • 10
  • 5
  • \dfrac{1}{10}
  • \dfrac{1}{5}
\displaystyle \int_{0}^{1}\frac{4x^{3}}{\sqrt{1-x^{8}}}dx =?
  • \pi
  • -\pi
  • \pi /2
  • - \pi /2
Evaluate: \displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{1+x^{2}}dx
  • \displaystyle \frac{\pi^{2}}{4}
  • \displaystyle \frac{\pi^{2}}{18}
  • \displaystyle \frac{\pi^{2}}{32}
  • \displaystyle \frac{\pi^{2}}{8}-1
Evaluate: \displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}d{x}
  • \pi
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{3}

\displaystyle \int_{0}^{\pi_/{2}}\frac{\cos x}{1+\sin x}d_{X=}
  • \log 2
  • \log \mathrm{e}
  • \dfrac{1}{2} log3
  • 0
The value of \int_{0}^{\infty} x.e^{-x^{2}}dx_{=}
  • 1
  • - 1/2
  • 1/2
  • 0
\displaystyle \int_{0}^{1}\frac{x^{2}}{1+x^{2}}dx equals
  • 1-\displaystyle \frac{\pi}{4}
  • 1-\displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{4}

\displaystyle \int_{0}^{1}\frac{dx}{e^{x}+e^{-x}}=
  • tan^{-1}e
  • \displaystyle \frac{\pi}{4}
  • ta\displaystyle \mathrm{n}^{-1}\mathrm{e}-\frac{\pi}{4}
  • ta\displaystyle \mathrm{n}^{-1}\mathrm{e}+\frac{\pi}{4}

\displaystyle \int_{1}^{2}(\frac{1+x\log x}{x})e^{x}dx_{=}
  • \mathrm{e}^{2} log2
  • elog2
  • \displaystyle \frac{1}{2} log2
  • \displaystyle \frac{\mathrm{e}^{2}}{2} log2
Evaluate the integral
\displaystyle \int_{\frac{\sqrt{2}}{3}}^{ \frac{\sqrt{3}}{3}}\displaystyle \frac{dx}{\sqrt{4-9x^{2}}}
  • \displaystyle \frac{\pi}{36}
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{7\pi}{30}
\displaystyle \int_{0}^{\pi /2} \displaystyle \frac{1}{\sin x+\cos x} \ dx
  • \sqrt{2}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)
  • \sqrt{2}l\mathrm{o}\mathrm{g}(\sqrt{2}-1)
  • \dfrac{1}{\sqrt{2}}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)
  • \dfrac{-1}{\sqrt{2}}l\mathrm{o}\mathrm{g}(\sqrt{2}+1)
Evaluate the integral
\displaystyle \int_{0}^{\pi_/{2}}\cos^{5}x.\sin 2xdx
  • 2/7
  • 1/7
  • -1/7
  • 3/7
Evaluate the integral
\displaystyle \int_{\frac{a}{2}}^{a}\frac{1}{\sqrt{a^{2}-x^{2}}}dx
  • \dfrac{\pi}{2}
  • \pi a
  • \pi-1
  • \dfrac{\pi}{3}

\displaystyle \int_{0}^{\displaystyle \tfrac{\pi}{4}}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}dx=
  • \log 2
  • -\log\sqrt{2}
  • 2\log 2
  • 3\log\sqrt{2}
\int_{\pi /4}^{\pi /2} Cotx.dx_{=}
  • 2 log 2
  • \displaystyle \frac{\pi}{2} log2
  • \log\sqrt{2}
  • \log 2
Evaluate the integral
\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}
  • 0
  • -1
  • \pi/2
  • -\pi/2
Evaluate the integral
\displaystyle \int_{0}^{1}\frac{(\sin^{-1} {x})^{2}}{\sqrt{1-x^{2}}}dx
  • \displaystyle \frac{\pi^{3}}{24}
  • \pi^{2}
  • -\pi^{2}
  • 0
Evaluate the integral
\displaystyle \int_{0}^{a}\sqrt{a^{2}-x^{2}}dx
  • \displaystyle \frac{a^{2}}{4}
  • \pi {a}^{2}
  • \displaystyle \frac{\pi a^{2}}{2}
  • \displaystyle \frac{\pi a^{2}}{4}
Evaluate the integral
\displaystyle \int_{1/2}^{1}\frac{1}{\sqrt{1-x^{2}}}dx
  • \pi
  • \pi/2
  • \pi/3
  • \pi/4

\displaystyle \int_{0}^{1}\sqrt{1-x^{2}}dx_{=}
  • 1-\displaystyle \frac{\pi}{4}
  • 1-\displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{4}

\displaystyle \int_{0}^{a}\frac{1}{a^{2}+x^{2}}dx_{=}
  • \pi/2
  • \pi/3
  • \pi/4
  • \pi/4a
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers