Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 10 - MCQExams.com

Let u=0dxx4+7x2+1&v=0x2dxx4+7x2+1 then:
  • v > u
  • 6v = π
  • 3u+2v=5π/6
  • u+v=π/3
 If I=158dx(x3)x+1 thenI equals
  • 12log53
  • 2log13
  • 12log15
  • 2log53
37 If n>1, and I=0dx(x+1+x2)n then I  equals
  • nn21
  • 2nn21
  • n2(n21)
  • n21
A function f is defined by f(x)=12r1,12r<x12r1,r=1,2,3,..... then the value of 10f(x)dx is equal
  • 13
  • 14
  • 23
  • 12
If α0dx1cosαcosx=Asinα+B(a0)
Then possible values of A and B are
  • A=π2,B=0
  • A=π4,B=π4sinα
  • A=π6,B=πsinα
  • A=π,B=πsinα
eeeeeeedxxlnxln(lnx)ln(ln(lnx)) equals
  • 1
  • 1/e
  • e-1
  • 1+e
If f(x)=10(xf(t)+1)dt,then30f(x)dx=12 
because 
Statement-2: f(x) = 3x + 1
  • Statements-1 is true, statements-2 is true and statements-2 is correct explanation for statement-1.
  • Statements-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statements-1.
  • Statements-1 is true, statements-2 is false.
  • Statements-1 is false, statements-2 is true.
Value of π/20sin4ΘsinΘdΘ is
  • 1/3
  • 2/3
  • 1
  • 4/3
Evaluate 10(tx+1x)ndx, where n is a positive integer and t is a parameter independent of x. Hence 10xk(1x)nkdx=P[nCk(n+1)]fork=0,1,......n, then P=
  • 2
  • 1
  • 3
  • None of these
For x > 0, let f(x) = x1logt1+tdt. Then f(x) + f(1x) is equal to:
  • 14logx2
  • log x
  • 12(logx)2
  • 14(logx)2
The value of 1/20sin1x(1x2)3/2dx is
  • π2log2
  • π412log2
  • π2+12log2
  • π12log2
Evaluate π/40cosxsinx10+sin2xdx
  • 13(tan123+tan113)
  • 13(tan113cot123)
  • 13(tan123tan113)
  • 13(tan113cot113)
The value of 43(4x)(x3)dx is
  • π16
  • π8
  • π4
  • π2
The value of the integral 113(xx3)13x4dx
  • 6
  • 0
  • 3
  • 4
If Im=e1(lnx)mdx, where mϵN,then I10+10I9 is equal to-
  • e10
  • e1010
  • e
  • e-1
If I = 23 (|x + 1 | + |x + 2| + |x - 1|)dx, then I equal
  • 312
  • 352
  • 472
  • None of these
π/30cosθ54sinθdθ equal to.
  • 14log(55+23)
  • 14log(5523)
  • 14log(5+235)
  • 14log(5235)
The value of 31/3tan(x2+1x2)sin(x+1x)dxx is 
  • 0
  • 3/2
  • 1/2
  • 4/3
Let I1=10exdx1+x and I2=10x2dxex3(2x3), then I1I2 is
  • 3/e
  • e/3
  • 3e
  • 1/3e
The value of 31/3tan(x21x2)sin(x+1x)dxx is 
  • 0
  • 32
  • 12
  • 43
π/20sin8xcos2xdx is equal to
  • π512
  • 3π512
  • 5π512
  • 7π512
The value of the integral 10xα1logxdx is
  • log(α+1)
  • 2log(α+1)
  • 3logα
  • none of these
The value of the definite integral π/20(cos10xsin12x)dx, is equal to.
  • 110
  • 111
  • 112
  • 122
If I=π/6π/6π+4x51sin(|x|+π6)dx, then I equals to
  • 4π
  • 2π+13
  • 2π13
  • 4π+313
If, π20sin2x(1+cosx2)dx=0
  • 4π2
  • π42
  • $$4 - frac{\pi}{2}$
  • 4+π2
In=e1(logx)ndx and In=A+BIn1 then
A=........., B=............
  • e,n
  • 1/e,n
  • e,n
  • en
x0sinx1+cos2xdx=πcosα1sin2α
  • for no value of α
  • for exactly two values of α in (0,π)
  • for atleast one α in (π/2,π)
  • for exactly one α in (0,π/2)
What is 10x(1x)9dx equal to?
  • 1240
  • 1110
  • 1132
  • 1148
The value of 140[x2][x228x+196]+[x2]
where [x] is the integral part of real x, is
  • 14
  • 0
  • 7
  • 49
If I1=102x2dx,I2=102x3dx,I3=212xx2dx then 
  • I1>I2
  • I2>I1
  • I3>I4
  • I3=I4
E=RGMmx2 dx , (where G , M , m are constants ) equal to
  • GMmR2
  • +GMmR2
  • GMmR
  • +GMmR
403602x2x+14036xdx=............
  • 2018
  • 4035
  • 2017
  • -2015
If I1=102x3dx,I2=102x2dx,I3=212x2dx and I4=212x3dx, then
  • I1>I2
  • I2>I1
  • I3>I4
  • I1>I3
A function f(x) which satisfies the relation f(x)=ex+10exf(t)dt, then f(x) is
  • ex2e
  • (e2)ex
  • 2ex
  • ex2
Value of the definite integral 10cot1(1x+x2)dx is:
  • πlog2
  • π2log2
  • π+log2
  • π2+log2
If I=π0xsinx1+cos2xdx, then the value of sinI, is
  • 12
  • 0
  • 22
  • 1
ifln=10xm(lnx)ndx,andln=1m+1ln1 then k is equal to
  • n
  • -n
  • m-1
  • None of these
Forx>0,let  f(x)=21logt1+tdt,thenf(x)+f(1x)is equal to:
  • 14(logx)2
  • 12(logx)2
  • logx
  • 14logx2
Evaluate the integral, 10cos(2cot11x1+x)dx=
  • 1/2
  • 1/2
  • 0
  • 1
π/2π/4cosθcsc2θdθ=
  • 21
  • 12
  • 2+1
  • None of these
32(x+2)22x210x+53dx is equal to
  • 2
  • 1
  • 12
  • 52
Solve 1/20xsin1x1x2dx=
  • 12+3π12
  • 123π12
  • 122π12
  • None of these
For n >2,        π/20sec2xdx(secx+tanx)n=?
  • 1n21
  • nn21
  • nn2+1
  • 2n21
Let I=101+x1xdx and J=101x1+xdx, then the correct statement is
  • I+J=4
  • IJ=π
  • I=2+π2
  • J=4π2
π/4π/4ln1+sin2xdx has the value equal to:
  • π4l n2
  • π2l n2
  • π8l n2
  • π16l n2
11xtan1xdx
  • (π21)
  • (π2+1)
  • (π1)
  • None
2π01+sinx2dx=
  • 0
  • 2
  • 8
  • 4
10x(1x)dx=.
  • π8
  • 3π8
  • 5π4
  • π2
If I1=1x11+t2dt and I2=1/x111+t2dt for x > 0, then 
  • I1=I2
  • I1>I2
  • I2>I1
  • None of these.
π/20dxa2cos2x+b2sin2x equals-
  • π/ab
  • 2π/ab
  • ab/π
  • π/2ab
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers