Processing math: 4%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 10 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Definite Integrals
Quiz 10
Let
u
=
∞
∫
0
d
x
x
4
+
7
x
2
+
1
&
v
=
∞
∫
0
x
2
d
x
x
4
+
7
x
2
+
1
then:
Report Question
0%
v > u
0%
6v =
π
0%
3
u
+
2
v
=
5
π
/
6
0%
u
+
v
=
π
/
3
Explanation
v
=
∫
∞
0
x
2
d
x
x
4
+
7
x
2
+
1
put
x
=
1
t
⇒
d
x
=
−
1
t
2
d
t
v
=
−
∫
0
∞
1
t
2
⋅
1
t
2
d
t
1
t
4
+
1
t
2
+
1
=
∫
∞
0
d
x
x
4
+
7
x
2
+
1
v=u hence
2
u
=
∫
∞
0
(
x
2
+
1
x
4
+
7
x
2
+
1
)
d
x
=
∫
∞
0
(
1
+
1
x
2
x
2
+
1
x
2
+
7
)
d
x
=
∫
∞
0
d
(
x
−
1
x
)
(
x
−
1
x
)
2
+
3
2
=
∫
∞
0
d
t
t
2
+
9
2
3
[
tan
−
1
t
3
]
∞
0
2
u
=
π
/
3
If
I
=
∫
15
8
d
x
(
x
−
3
)
√
x
+
1
then
I
equals
Report Question
0%
1
2
log
5
3
0%
2
log
1
3
0%
1
2
−
log
1
5
0%
2
log
5
3
Explanation
Put
√
x
+
1
=
t
or
x
+
1
=
t
2
∴
\displaystyle =\frac{1}{2} \left[ \log \frac{1}{3}-\log \frac{1}{5}\right]
\displaystyle =\frac{1}{2}\log \frac{5}{3}
37 If
n > 1,
and
\displaystyle I=\int _{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^{2}})^{n}}
then
I
equals
Report Question
0%
\displaystyle \frac{n}{n^{2}-1}
0%
\displaystyle \frac{2n}{n^{2}-1}
0%
\displaystyle \frac{n}{2(n^{2}-1)}
0%
\displaystyle \sqrt{ n^{2}-1}
Explanation
As
x
and
\sqrt{1+x^{2}}
are involved,
put
\sqrt{1-x^{2}} = t - x
or
1 + x^{2}=t^{2} -2tx + x^{2}
\displaystyle \Rightarrow x= \frac{1}{2}\left(t-\frac{1}{t}\right)
\displaystyle \Rightarrow dx = \frac{1}{2} \left (1+\frac{1}{t^{2}}\right )
\displaystyle \therefore I= \int_{0}^{\infty} \frac{1}{2} \left(1+\frac{1}{t^{2}}\right) \frac{dt}{t^{n}}
=\displaystyle \frac{1}{2} \left.\left( \frac{t^{-n+1}}{1-n}-\frac{t^{-n-1}}{n+1}\right) \right ]_{1}^{\infty}
=\displaystyle \frac{1}{2}\left. \left ( \frac{1}{1-n}\frac{1} {t^{n-1}}-\frac{1}{n+1}\frac{1}{t^{n+1}} \right) \right ]_{1}^{\infty}
=\displaystyle 0+\frac{1}{2} \left( \frac{1}{n-1}+\frac{1}{n+1}\right) =\frac{n}{n^{2}-1}
A function
f
is defined by
\displaystyle f(x)=\frac{1}{2^{r-1}},\frac{1}{2r}<x\leq \frac{1}{2^{r-1}},r=1,2,3,.....
then the value of
\displaystyle \int _{0}^{1}f(x)dx
is equal
Report Question
0%
\cfrac 13
0%
\cfrac 14
0%
\cfrac 23
0%
\cfrac 12
Explanation
\displaystyle \int_{0}^{1}f(x) dx =\sum_{r=1}^{\infty} \int_{2^{-r}}^{2^{-(r-1)}} \frac{1}{2^{r-1}}dx
\displaystyle =\sum_{r=1}^{\infty}\frac{1}{2^{r-1}}[2^{-(r-1)}-2^{-r}]
\displaystyle =\sum_{1}^{\infty}2^{-2(r-1)}- \sum _{1}^{\infty} 2^{-2r+1}
\displaystyle =(2^{2}-2)\sum_{1}^{\infty}2^{-2r}=2\cdot \frac{1}{4}\cdot \frac{1}{1-1/4}=\frac{2}{3}\cdot
If
\displaystyle \int_{0}^{\alpha}\frac{dx}{1-\cos \alpha \cos x}=\frac{A}{\sin \alpha}+B(a\neq 0)
Then possible values of
A
and
B
are
Report Question
0%
\displaystyle A=\frac{\pi}{2},B=0
0%
\displaystyle A=\frac{\pi}{4},B=\frac{\pi}{4\sin \alpha}
0%
\displaystyle A=\frac{\pi}{6},B=\frac{\pi}{\sin \alpha}
0%
\displaystyle A=\pi ,B=\frac{\pi}{\sin \alpha}
Explanation
Let
\displaystyle I=\int _{ 0 }^{ \alpha }{ \frac { dx }{ 1-\cos { \alpha } \cos { \alpha } } }
\displaystyle =\int _{ 0 }^{ \alpha }{ \frac { dx }{ \left( \cos ^{ 2 }{ \frac { x }{ 2 } } +\sin ^{ 2 }{ \frac { x }{ 2 } } \right) -\cos { \alpha } \left( \cos ^{ 2 }{ \frac { x }{ 2 } } -\sin ^{ 2 }{ \frac { x }{ 2 } } \right) } }
\displaystyle =\int _{ 0 }^{ \alpha }{ \frac { dx }{ \left( 1-\cos { \alpha } \right) \cos ^{ 2 }{ \frac { x }{ 2 } } +\left( 1+\cos { \alpha } \right) \sin ^{ 2 }{ \frac { x }{ 2 } } } }
\displaystyle =\int _{ 0 }^{ \alpha }{ \frac { dx }{ 2\sin ^{ 2 }{ \frac { \alpha }{ 2 } } \cos ^{ 2 }{ \frac { x }{ 2 } } +2\cos ^{ 2 }{ \frac { \alpha }{ 2 } } \sin ^{ 2 }{ \frac { x }{ 2 } } } }
\displaystyle =\frac { 1 }{ 2 } \int _{ 0 }^{ \alpha }{ \frac { \sec ^{ 2 }{ \frac { \alpha }{ 2 } } \sec ^{ 2 }{ \frac { x }{ 2 } } }{ \tan ^{ 2 }{ \frac { \alpha }{ 2 } } +\tan ^{ 2 }{ \frac { x }{ 2 } } } dx }
put
\displaystyle \tan { \frac { x }{ 2 } } =t\Rightarrow \frac { 1 }{ 2 } \sec ^{ 2 }{ \frac { x }{ 2 } } dx=dt
\displaystyle \therefore I=\int _{ 0 }^{ \tan { \frac { \alpha }{ 2 } } }{ \frac { \sec ^{ 2 }{ \frac { \alpha }{ 2 } } }{ { t }^{ 2 }+\tan ^{ 2 }{ \frac { \alpha }{ 2 } } } dt }
\displaystyle =\sec ^{ 2 }{ \frac { \alpha }{ 2 } } \cot { \frac { \alpha }{ 2 } } \left[ \tan ^{ -1 }{ \left( \frac { t }{ \tan { \frac { \alpha }{ 2 } } } \right) } \right] _{ 0 }^{ \tan { \frac { \alpha }{ 2 } } }
\displaystyle =\frac { 2 }{ \sin { \alpha } } .\frac { \pi }{ 4 } =\frac { \pi }{ 2\sin { \alpha } }
\displaystyle A=\frac { \pi }{ 2 } ,B=0
or
\displaystyle A=\frac { \pi }{ 4 } ,B=\frac { \pi }{ 4\sin { \alpha } }
\displaystyle \int_{e^{e^{e}}}^{e^{e^{e^{e}}}}\frac{dx}{xlnx\cdot ln\left ( lnx \right )\cdot ln\left ( ln\left ( lnx \right ) \right )}
equals
Report Question
0%
1
0%
1/e
0%
e-1
0%
1+e
Explanation
Let
\displaystyle I=\int _{ { e }_{ { e }_{ e } } }^{ { e }^{ { e }^{ { e }^{ e } } } }{ \frac { 1 }{ x\log { x } .\log { \left( \log { x } \right) . } \log { \left( \log { \left( \log { x } \right) } \right) } } } dx
Substitute
\displaystyle \log { \left( \log { x } \right) } =t\Rightarrow \frac { 1 }{ x\log { x } } dx=dt
\displaystyle I=\int _{ e }^{ { { e }^{ e } } }{ \frac { 1 }{ t\log { t } } dt } =\left[ \log { \log { t } } \right] _{ e }^{ { e }^{ e } }=\left[ 1-0 \right] =1
If
f\left( x \right) =\int _{ 0 }^{ 1 }{ \left( xf\left( t \right) +1 \right) dt,then\int _{ 0 }^{ 3 }{ f\left( x \right) dx=12 } }
because
Statement-2: f(x) = 3x + 1
Report Question
0%
Statements-1 is true, statements-2 is true and statements-2 is correct explanation for statement-1.
0%
Statements-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statements-1.
0%
Statements-1 is true, statements-2 is false.
0%
Statements-1 is false, statements-2 is true.
Value of
\displaystyle \int_{0}^{\pi /2}\displaystyle \frac{\sin 4\Theta }{\sin \Theta }\: d\Theta
is
Report Question
0%
1/3
0%
2/3
0%
1
0%
4/3
Explanation
\displaystyle I=\int _{ 0 }^{ \pi /2 }{ \frac { \sin { 4\Theta } }{ \sin { \Theta } } d\Theta } =\int _{ 0 }^{ \pi /2 }{ \sin { 4\Theta } \csc { \Theta } d\Theta }
=\int _{ 0 }^{ \pi /2 }{ \left( 2\cos ^{ 3 }{ \Theta } +2\cos { \Theta } -6\sin ^{ 2 }{ \Theta } \cos { \Theta } \right) d\Theta }
\displaystyle ={ \left[ -2\sin ^{ 3 }{ \Theta } +\frac { 10\sin { \Theta } }{ 3 } +\frac { 2 }{ 3 } \sin { \Theta } \cos ^{ 2 }{ \Theta } \right] }_{ 0 }^{ \pi /2 }=\frac { 4 }{ 3 }
Evaluate
\displaystyle \int_{0}^{1}\left ( tx+1-x \right )^{n}dx,
where n is a positive integer and t is a parameter independent of x. Hence
\displaystyle \int_{0}^{1}x^{k}\left ( 1-x \right )^{n-k}dx=\frac{P}{\left [ ^{n}C_{k}\left ( n+1 \right ) \right ]}for\:k=0,1,......n
, then
P=
Report Question
0%
2
0%
1
0%
3
0%
None of these
Explanation
Let
\displaystyle I=\int _{ 0 }^{ 1 }{ { \left( tx+1-x \right) }^{ n } } dx=\int _{ 0 }^{ 1 }{ { \left\{ \left( t-1 \right) x+1 \right\} }^{ n } } dx=\left[ \frac { \left( t-1 \right) { x+1 }^{ n+1 } }{ \left( n+1 \right) \left( t-1 \right) } \right] _{ 0 }^{ 1 }
\displaystyle =\frac { 1 }{ n+1 } \left( \frac { { t }^{ n+1 }-1 }{ t-1 } \right) =\frac { 1 }{ n+1 } \left( 1+t+{ t }^{ 2 }+...{ t }^{ n } \right)
...(1)
Again
\displaystyle\int _{ 0 }^{ 1 }{ { \left( tx+1-x \right) }^{ n } } dx=\int _{ 0 }^{ 1 }{ { \left[ \left( 1-x \right) +tx \right] }^{ n } } dx
\displaystyle=\int _{ 0 }^{ 1 }{ \left[ _{ }^{ n }{ { C }_{ 0 } }{ \left( 1-x \right) }^{ n }+^{ n }{ { C }_{ 1 } }{ \left( 1-x \right) }^{ n-1 }\left( tx \right) +^{ n }{ { C }_{ 2 } }{ \left( 1-x \right) }^{ n-2 }{ \left( tx \right) }^{ 2 }+...+^{ n }{ { C }_{ n } }{ \left( tx \right) }^{ n } \right] } dx
\displaystyle=\int _{ 0 }^{ 1 }{ \sum _{ r=1 }^{ n }{ ^{ n }{ { C }_{ r } } } } { \left( 1-x \right) }^{ n-r }{ \left( tx \right) }^{ r }dx=\sum _{ r=1 }^{ n }{ ^{ n }{ { C }_{ r } } } \left[ \int _{ 0 }^{ 1 }{ { \left( 1-x \right) }^{ n-r }{ x }^{ r }dx } \right] { t }^{ r }
...(2)
From (1) and (2)
\displaystyle \sum _{ r=1 }^{ n }{ ^{ n }{ { C }_{ r } } } \left[ \int _{ 0 }^{ 1 }{ { \left( 1-x \right) }^{ n-r }.{ x }^{ r }dx } \right] { t }^{ r }=\frac { 1 }{ n+1 } \left( 1+t+...{ t }^{ n } \right)
On equating coefficient of
{ t }^{ k }
on both sides , we get
\displaystyle ^{ n }{ { C }_{ k } }\left[ \int _{ 0 }^{ 1 }{ { \left( 1-x \right) }^{ n-r },{ x }^{ r } } dx \right] \Rightarrow \int _{ 0 }^{ 1 }{ { \left( 1-x \right) }^{ n-k } } { x }^{ h }dx=\frac { 1 }{ { \left( n+1 \right) }^{ n }{ { C }_{ k } } }
For x > 0, let f(x) =
\displaystyle \int_{1}^{x}{ \frac{log t}{1 + t}} dt
. Then f(x) + f
\displaystyle \left( \frac{1}{x} \right)
is equal to:
Report Question
0%
\displaystyle \frac{1}{4} log x^2
0%
log x
0%
\displaystyle \frac{1}{2} (log x)^2
0%
\displaystyle \frac{1}{4} (log x)^2
Explanation
f(x)=\int _{ 1 }^{ x }{ \cfrac { \log { t } }{ 1+{ t } } }
--(1)
f\left( \cfrac { 1 }{ x } \right) =\int _{ 1 }^{ 1/x }{ \cfrac { \log { t } }{ 1+{ t } } }
Put t=1/u
f\left( \cfrac { 1 }{ x } \right) =\displaystyle\int _{ 1 }^{ x }{ \cfrac { -u.\log { u } }{ (1+{ u) } } \cfrac { -du }{ { u }^{ 2 } } }
f\left( \cfrac { 1 }{ x } \right) =\displaystyle \int _{ 1 }^{ x }{ \cfrac { \log { u } }{ u(1+{ u) } } du }
--(2)
Add (1) and (2)
=\displaystyle \int _{ 1 }^{ x }{ \cfrac { \log { u } }{ u } du }
z=logu\\ dz=\cfrac { du }{ u }
\int _{ 1 }^{ x }{ zdz }
={ \cfrac { 1 }{ 2 } (\log { x } })^{ 2 }
The value of
\displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 } } }{ \dfrac { \sin ^{ -1 }{ x } }{ { \left( 1-{ x }^{ 2 } \right) }^{ { 3 }/{ 2 } } } dx }
is
Report Question
0%
\dfrac { \pi }{ 2 } -\log { 2 }
0%
\dfrac { \pi }{ 4 } -\dfrac { 1 }{ 2 } \log { 2 }
0%
\dfrac { \pi }{ 2 } +\dfrac { 1 }{ 2 } \log { 2 }
0%
\pi -\dfrac { 1 }{ 2 } \log { 2 }
Explanation
Let
l=\displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 } } }{ \dfrac { \sin ^{ -1 }{ x } }{ { \left( 1-{ x }^{ 2 } \right) }^{ { 3 }/{ 2 } } } dx }
When
x=0
, then
\sin { t } =0=\sin { 0 } \Rightarrow t=0
When
x=\dfrac { 1 }{ \sqrt { 2 } }
, then
\sin { t } =\dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { \pi }{ 4 } }
\Rightarrow t=\dfrac { \pi }{ 4 }
Put
x=\sin { t } dx=\cos { t } dt
\therefore l=\displaystyle\int _{ 0 }^{ { \pi }/{ 4 } }{ \dfrac { t }{ \cos ^{ 3 }{ t } } \cdot \cos { t } dt } =\displaystyle\int _{ 0 }^{ { \pi }/{ 4 } }{ t\sec ^{ 2 }{ t } dt }
={ \left[ t\cdot \tan { t } \right] }_{ 0 }^{ { \pi }/{ 4 } }-\displaystyle\int _{ 0 }^{ { \pi }/{ 4 } }{ \tan { t } dt }
=\dfrac { \pi }{ 4 } -{ \left[ \log { \sec { t } } \right] }_{ 0 }^{ { \pi }/{ 4 } }
=\dfrac { \pi }{ 4 } -\log { \sqrt { 2 } } -0=\dfrac { \pi }{ 4 } -\log { { 2 }^{ { 1 }/{ 2 } } } =\dfrac { \pi }{ 4 } -\dfrac { 1 }{ 2 } \log { 2 }
Evaluate
\displaystyle \int_{0}^{\pi /4}\frac{\cos x-\sin x}{10+\sin 2x}dx
Report Question
0%
\displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{2}}{3}+\tan^{-1} \frac{1}{3} \right )
0%
\displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{2}{3} \right )
0%
\displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{2}}{3}-\tan^{-1} \frac{1}{3} \right )
0%
\displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{1}{3} \right )
Explanation
Let
\displaystyle I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { \cos { x } -\sin { x } }{ 10+\sin { 2x } } } dx
Put
\\ \cos { x } +\sin { x } =t\Rightarrow \left( -\sin { x } +\cos { x } \right) dx=dt
\displaystyle I=\int _{ 1 }^{ \sqrt { 2 } }{ \frac { 1 }{ 10+\left( { t }^{ 2 }-1 \right) } dt } =\int _{ 1 }^{ \sqrt { 2 } }{ \frac { 1 }{ { t }^{ 2 }+9 } } dt
\displaystyle =\frac { 1 }{ 3 } \left[ \tan ^{ -1 }{ \frac { t }{ 3 } } \right] _{ 1 }^{ \sqrt { 2 } }=\frac { 1 }{ 3 } \left( \tan ^{ -1 }{ \frac { \sqrt { 2 } }{ 3 } -\tan ^{ -1 }{ \frac { 1 }{ 3 } } } \right)
The value of
\displaystyle \int_{3}^{4}\sqrt {(4 - x)(x - 3)}dx
is
Report Question
0%
\dfrac {\pi}{16}
0%
\dfrac {\pi}{8}
0%
\dfrac {\pi}{4}
0%
\dfrac {\pi}{2}
Explanation
Let
\displaystyle I = \int_{3}^{4} \sqrt {(4 - x)(x - 3)}\ dx
\displaystyle = \int_{3}^{4} \sqrt {-x^{2} + 7x - 12}\ dx
\displaystyle = \int_{3}^{4} \sqrt {-\left (x^{2} - 7x + \dfrac {49}{4} - \dfrac {49}{4}\right ) - 12}\ dx
\displaystyle = \int_{3}^{4} \sqrt {- \left (x - \dfrac {7}{2}\right )^{2} + \dfrac {49}{4} - 12}\ dx
\displaystyle = \int_{3}^{4} \sqrt {\dfrac {1}{4} - \left (x - \dfrac {7}{2}\right )^{2}}\ dx
Let
t = x - \dfrac {7}{2}\rightarrow dt = dx
\therefore
Upper limit
= \dfrac {1}{2}
and lower limit
= -\dfrac {1}{2}
\displaystyle = \int_{-1/2}^{1/2} \sqrt {\left (\dfrac {1}{2}\right )^{2} - t^{2}}dt
\displaystyle = 2\int_{0}^{1/2} \sqrt {\left (\dfrac {1}{2}\right )^{2} - t^{2}}dx
\displaystyle = 2\left [\dfrac {t}{2}\sqrt {\dfrac {1}{4} - t^{2}} + \dfrac {1}{8} \sin^{-1} 2t\right ]_{0}^{\frac12}
= 2\left [0 + \dfrac {1}{8}\times \dfrac {\pi}{2}\right ]
= \dfrac {\pi}{8}
The value of the integral
\displaystyle \int_{\frac {1}{3}}^1\frac {(x-x^3)^{\frac {1}{3}}}{x^4}dx
Report Question
0%
6
0%
0
0%
3
0%
4
Explanation
Let
\displaystyle I=\int_{ {1}/{3}}^1\frac {(x-x^3)^{\frac {1}{3}}}{x^4}dx
Put
x=\sin\theta
\Rightarrow dx=\cos\theta \, d\theta
When
x=\cfrac {1}{3},\theta =\sin^{-1}\left (\cfrac {1}{3}\right )
and when
x=1, \theta =\cfrac {\pi}{2}
\Rightarrow \displaystyle I=\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta-\sin^3\theta)^{\frac {1}{3}}}{\sin^4\theta}cos \theta \,d\theta
\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta)^{\frac {1}{3}}(1-\sin^2\theta)^{\frac {1}{3}}}{\sin^4\theta}\cos \theta \, d\theta
\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta)^{\frac {1}{3}}(\cos\theta)^{\frac {2}{3}}}{\sin^4\theta}\cos \theta \, d\theta
\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta)^{\frac {1}{3}}(\cos\theta)^{\frac {2}{3}}}{\sin^2\theta \sin^2\theta}\cos \theta d\theta
\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\cos\theta)^{\frac {5}{3}}}{(\sin\theta)^{\frac {5}{3}}}cosec^2\theta d\theta
\displaystyle=\int_{sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}(\cot\theta)^{\frac {5}{3}}cosec^2\theta d\theta
Put
\cot \theta=t
\Rightarrow -cosec^2\theta \,d\theta=dt
When
\theta=\sin^{-1}\left (\dfrac {1}{3}\right ),t=2\sqrt 2
and when
\theta=\dfrac {\pi}{2}, t=0
\therefore I=-\int_{2\sqrt 2}^0(t)^{\frac {5}{3}}dt
\Rightarrow \displaystyle I=\int_0^{2\sqrt 2} (t)^{\frac {5}{3}}dt
\displaystyle =\left [\frac {3}{8}(t)^{\frac {8}{3}}\right ]_0^{2\sqrt 2}
\displaystyle =\frac {3}{8}[(2\sqrt 2)^{\frac {8}{3}}]
=\dfrac {3}{8}[(\sqrt 8)^{\frac {8}{3}}]
=\cfrac {3}{8}[(8)^{\frac {4}{3}}]
=\cfrac {3}{8}[16]
=3\times 2
=6
Hence, the correct Answer is A.
If
{ I }_{ m }=\overset { e }{ \underset { 1 }{ \int } } (lnx)^{ m }dx,
where
m\epsilon N,
then
{ I }_{ 10 }+10{ I }_{ 9 }
is equal to-
Report Question
0%
{ e }^{ 10 }
0%
\frac { { e }^{ 10 } }{ 10 }
0%
e
0%
e-1
If I =
\overset { 2 }{ \underset { -3 }{ \int } }
(|x + 1 | + |x + 2| + |x - 1|)dx, then I equal
Report Question
0%
\dfrac{31}{2}
0%
\dfrac{35}{2}
0%
\dfrac{47}{2}
0%
None of these
\displaystyle\int^{\pi /3}_0\frac{\cos \theta}{5-4\sin \theta}d\theta
equal to.
Report Question
0%
\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5+2\sqrt{3}}\right)
0%
\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5-2\sqrt{3}}\right)
0%
\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5+2\sqrt{3}}{5}\right)
0%
\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5-2\sqrt{3}}{5}\right)
Explanation
I=\int _{ 0 }^{ { \pi }/{ 3 } }{ \cfrac { \cos { \theta } }{ 5-4\sin { \theta } } d\theta }
Let
5-4\sin { \theta =t }
\Rightarrow \cos { \theta } d\theta =-\cfrac { dt }{ 4 }
I=\int _{ 5 }^{ 5-2\sqrt { 3 } }{ \cfrac { -dt }{ 4t } }
I=\cfrac { 1 }{ 4 } \int _{ 5-2\sqrt { 3 } }^{ 5 }{ \cfrac { dt }{ t } }
I=\cfrac { 1 }{ 4 } { \left[ \log { t } \right] }^{ 5 }_{ 5-2\sqrt { 3 } }
I=\cfrac { 1 }{ 4 } { \left[ \log { 5 } - \log { (5-2\sqrt { 3 } ) } \right] }
I=\cfrac { 1 }{ 4 } { \left[ \log \left({ \cfrac { 5 }{ 5-2\sqrt { 3 } } }\right) \right] }
\therefore I=\cfrac { 1 }{ 4 } \log { \left( \cfrac { 5 }{ 5-2\sqrt { 3 } } \right) }
The value of
\int _{ 1/3 }^{ 3 }{ \cfrac { \tan { \left( { x }^{ 2 }+\cfrac { 1 }{ { x }^{ 2 } } \right) } }{ \sin { \left( x+\cfrac { 1 }{ x } \right) } } } \cfrac { dx }{ x }
is
Report Question
0%
0
0%
3/2
0%
1/2
0%
4/3
Let
I_{1} =\displaystyle \int_{0}^{1}\dfrac {e^{x}dx}{1 + x}
and
I_{2} = \displaystyle \int_{0}^{1} \dfrac {x^{2}dx}{e^{x^{3}}(2 - x^{3})}
, then
\dfrac {I_{1}}{I_{2}}
is
Report Question
0%
3/e
0%
e/3
0%
3e
0%
1/3e
Explanation
Given :
{ I }_{ 1 }=\int _{ 0 }^{ 1 }{ \cfrac { { e }^{ x }dx }{ (1+x) } } \quad { I }_{ 2 }=\int _{ 0 }^{ 1 }{ \cfrac { { x }^{ 2 }dx }{ { e }^{ x^{ 3 } }(2-{ x }^{ 3 }) } }
{ I }_{ 1 }=\int _{ 0 }^{ 1 }{ \cfrac { { e }^{ x }dx }{ (1+x) } } \\ { I }_{ 2 }=\int _{ 0 }^{ 1 }{ \cfrac { { x }^{ 2 }dx }{ { e }^{ x^{ 3 } }(2-{ x }^{ 3 }) } }
Let :
1-{ x }^{ 3 }=t\quad x\rightarrow 0\quad t\rightarrow 1
-3{ x }^{ 2 }=dt\quad x\rightarrow 1\quad t\rightarrow 0\\ { I }_{ 2 }=-\int _{ 0 }^{ 1 }{ \cfrac { 1 }{ 3 } \cfrac { { e }^{ t-1 } }{ (1+t) } dt } =\cfrac { 1 }{ 3e } \int _{ 0 }^{ 1 }{ \cfrac { { e }^{ t } }{ (1+t) } dt } \\ \cfrac { { I }_{ 1 } }{ { I }_{ 2 } } =\cfrac { \int _{ 0 }^{ 1 }{ \cfrac { { e }^{ x }dx }{ (1+x) } } }{ \cfrac { 1 }{ 3e } \int _{ 0 }^{ 1 }{ \cfrac { { e }^{ t } }{ (1+t) } dt } } =3e
Hence the correct answer is
3e
The value of
\int^3_{1/3}\dfrac{tan(x^2-\dfrac{1}{x^2})}{sin(x+\dfrac{1}{x}) }\dfrac{dx}{x}
is
Report Question
0%
0
0%
\dfrac{3}{2}
0%
\dfrac{1}{2}
0%
\dfrac{4}{3}
\int _{ 0 }^{ \pi /2 }{ \sin ^{ 8 }{ x } \cos ^{ 2 }{ x } dx }
is equal to
Report Question
0%
\cfrac { \pi }{ 512 }
0%
\cfrac {3 \pi }{ 512 }
0%
\cfrac { 5\pi }{ 512 }
0%
\cfrac {7 \pi }{ 512 }
The value of the integral
\displaystyle \int_0^1 \dfrac{x^{\alpha}-1}{\log x}dx
is
Report Question
0%
\log (\alpha+1)
0%
2\log (\alpha+1)
0%
3\log \alpha
0%
none of these
Explanation
I(\alpha)=\displaystyle\int_0^1\dfrac{x^{\alpha}-1}{\text{log }x}dx
Differentiating with respect to
\alpha,
we get
,
I'(\alpha)=\displaystyle\int_0^1x^\alpha dx=\dfrac{1}{\alpha +1}
We need to solve this simple differential equation
:I'(\alpha)=\dfrac{1}{\alpha +1}
On solving, we get,
I(\alpha)=\text{log}(\alpha +1)+C
Now, from the initial equation, we can find that
I(0)=0
I(0)=\text{log}(1)+C=0
\Rightarrow C=0
So,
I(\alpha)=\text{log}(\alpha +1)
The value of the definite integral
\displaystyle\int^{\pi/2}_{0}\left(\cos ^{10}x\cdot \sin 12x\right)dx
, is equal to.
Report Question
0%
\displaystyle\frac{1}{10}
0%
\displaystyle\frac{1}{11}
0%
\displaystyle\frac{1}{12}
0%
\displaystyle\frac{1}{22}
Explanation
Let
I =\displaystyle \int_{0}^{\pi/2}(\cos^{10}x.\sin\, 12x) dx
\cos^{10}x.\sin\,12x = \cos^{10}x.\sin(11x+x) = \cos^{10}x.(\sin\,11x.\cos\,x + \cos\, 11x.\sin\,x)
= - \dfrac{1}{11}(-11\,\sin\,11x.\cos^{11}x - 11\,\cos\,11x.\cos^{10}x.\sin\,x)
= -\dfrac{1}{11} \times
\dfrac{d}{dx}(\cos\,11x.\cos^{11}x)
... (1)
Therefore,
I = \left (-\dfrac {1}{11}\right)\displaystyle \int_{0}^{\pi/2} \dfrac{d}{dx}(\cos\,11x.\cos^{11}x) dx
I =- \dfrac {1}{11}\times \cos\,11x.\cos^{11}x]_{0}^{\pi/2}
I = -\dfrac {1}{11}\times (0-1)
I = \dfrac{1}{11}
Correct answer is option
B.
If
\displaystyle I=\int _{ { -\pi }/{ 6 } }^{ { \pi }/{ 6 } }{ \dfrac { \pi +4{ x }^{ 5 } }{ 1-\sin { \left( \left| x \right| +\dfrac { \pi }{ 6 } \right) } } } dx
, then I equals to
Report Question
0%
4\pi
0%
2\pi +\dfrac { 1 }{ \sqrt { 3 } }
0%
2\pi -\dfrac { 1 }{ \sqrt { 3 } }
0%
4\pi +\sqrt { 3 } -\dfrac { 1 }{ \sqrt { 3 } }
If,
\int^{\frac{\pi}{2}} _0 \frac{sin^2x}{(1 + cosx^2)} dx = 0
Report Question
0%
\frac{4 - \pi}{2}
0%
\frac{\pi - 4}{2}
0%
$$4 - frac{\pi}{2}$
0%
\frac{4 + \pi}{2}
{I}_{n}=\int_{1}^{e}{\left(logx\right)^{n}dx}
and
{I}_{n}=A+{BI}_{n-1}
then
A=........., B=............
Report Question
0%
e,-n
0%
1/e,n
0%
-e,n
0%
-e-n
\displaystyle \int _{ 0 }^{ x }{ \cfrac { \sin { x } }{ 1+\cos ^{ 2 }{ x } } } dx=\pi \cfrac { \cos { \alpha } }{ 1-\sin ^{ 2 }{ \alpha } }
Report Question
0%
for no value of
\alpha
0%
for exactly two values of
\alpha
in
\left( 0,\pi \right)
0%
for atleast one
\alpha
in
\left( \pi /2,\pi \right)
0%
for exactly one
\alpha
in
\left( 0,\pi /2 \right)
What is
\int _{ 0 }^{ 1 }{ x{ \left( 1-x \right) }^{ 9 }dx }
equal to?
Report Question
0%
\dfrac{1}{240}
0%
\dfrac{1}{110}
0%
\dfrac{1}{132}
0%
\dfrac{1}{148}
Explanation
We need to find
\int_{0}^{1}x(1-x)^9dx
\int_{0}^{1}x(1-x)^9dx=\int_{0}^{1}(1-x)x^9dx
=\int_{0}^{1}(x^9-x^{10})dx
=\left[\dfrac{x^{10}}{10}-\dfrac{x^{11}}{11}\right]_{0}^{1}
=\dfrac{1}{10}-\dfrac{1}{11}
=\dfrac{11-10}{110}
=\dfrac{1}{110}
\therefore \int_{0}^{1}x(1-x)^9dx=\dfrac{1}{110}
The value of
\int _{ 0 }^{ 14 }{ \dfrac { \left[ { x }^{ 2 } \right] }{ \left[ { x }^{ 2 }-28x+196 \right] +\left[ { x }^{ 2 } \right] } }
where [x] is the integral part of real x, is
Report Question
0%
14
0%
0
0%
7
0%
49
If
I_1 =\int^1_0 2x^2 dx, I_2 =\int^1_0 2^{x3} dx, I_3 =\int^2_1 2x^{x2} dx
then
Report Question
0%
I_1 > I_2
0%
I_2 > I_1
0%
I_3 > I_4
0%
I_3 = I_4
\displaystyle E = \int_{R}^{\infty}\dfrac{GMm}{x^2}
dx , (where
G
,
M
,
m
are constants ) equal to
Report Question
0%
-\dfrac{GMm}{R^2}
0%
+\dfrac{GMm}{R^2}
0%
-\dfrac{GMm}{R}
0%
+\dfrac{GMm}{R}
\int _{ 0 }^{ 4036 }{ \dfrac { { 2 }^{ x } }{ { 2 }^{ x }+{ 1 }^{ 4036-x } } } dx=............
Report Question
0%
2018
0%
4035
0%
2017
0%
-2015
If
I_{1} = \int_{0}^{1} 2^{x^{3}} dx, I_{2} = \int_{0}^{1}2^{x^{2}}dx, I_{3} = \int_{1}^{2}2^{x^{2}}dx
and
I_{4} = \int_{1}^{2}2^{x^{3}}dx
, then
Report Question
0%
I_{1} > I_{2}
0%
I_{2} > I_{1}
0%
I_{3} > I_{4}
0%
I_{1} > I_{3}
Explanation
Given :-
I_{1} = \int_{0}^{1} 2^{x^{3}} dx, I_{2} = \int_{0}^{1}2^{x^{3}}dx, I_{3} = \int_{1}^{2}2^{x^{2}}dx
and
I_{4} = \int_{1}^{2}2^{x^{3}}dx
,
As we know
x^2 < x^3
for
x\in(1,2)
,
So
2^{x^{3}}
will also be grater than
2^{x^{2}}
for
x\in (0,1)
and
x\in (1,2)
\therefore I_{1}>I_2
hence
I_{3} = \int_{1}^{2}2^{x^{2}}dx
<
I_{4} = \int_{1}^{2}2^{x^{3}}dx
And also
2^{x^{2}}
when
x \in (1,2)
is grater than
2^{x^{3}}
for
x\in (0,1)
hence
I_{1} = \int_{0}^{1}2^{x^{3}}dx
<
I_{3} = \int_{1}^{2}2^{x^{2}}dx
Hence,
I_{1}>I_2
is correct.
A function
f(x)
which satisfies the relation
f(x) = e^{x} + \int_{0}^{1} e^{x}f(t)dt
, then
f(x)
is
Report Question
0%
\dfrac {e^{x}}{2 - e}
0%
(e - 2)e^{x}
0%
2e^{x}
0%
\dfrac {e^{x}}{2}
Value of the definite integral
\displaystyle \int _{ 0 }^{ 1 }{ \cot ^{ -1 }{ \left( 1-x+{ x }^{ 2 } \right) } dx }
is:
Report Question
0%
\pi -\log { 2 }
0%
\dfrac{\pi}{2} -\log { 2 }
0%
\pi +\log { 2 }
0%
\dfrac{\pi}{2} +\log { 2 }
If
I=\int _{ 0 }^{ \pi }{ \frac { x\sin { x } }{ 1+{ cos }^{ 2 }x } dx }
, then the value of
\sin { \sqrt { I } }
, is
Report Question
0%
\frac { 1 }{ 2 }
0%
0
0%
\frac { \sqrt { 2 } }{ 2 }
0%
1
if\,{l_n} = \int\limits_0^1 {{x^m}} {\left( {\ln x} \right)^n}dx,\,and\,{l_n} = \frac{1}{{m + 1}}{l_{n - 1}}
then k is equal to
Report Question
0%
n
0%
-n
0%
m-1
0%
None of these
For x>0
,let
f\left( x \right) =\int _{ 1 }^{ 2 }{ \dfrac { \log { t } }{ 1+t } } dt
,then
f\left( x \right) +f\left( \dfrac { 1 }{ x } \right)
is equal to:
Report Question
0%
\dfrac { 1 }{ 4 } \left( \log { x } \right) ^{ 2 }
0%
\dfrac { 1 }{ 2 } \left( \log { x } \right) ^{ 2 }
0%
\log { x }
0%
\dfrac { 1 }{ 4 } \log { { x }^{ 2 } }
Evaluate the integral,
\int _{ 0 }^{ 1 }{ \cos { \left( 2\cot ^{ -1 }{ \sqrt { \dfrac { 1-x }{ 1+x } } } \right) } } dx=
Report Question
0%
-1/2
0%
1/2
0%
0
0%
1
\int _{ \pi /4 }^{ \pi /2 }{ \cos { \theta } \csc ^{ 2 }{ \theta } d\theta = }
Report Question
0%
\sqrt {2}-1
0%
1-\sqrt {2}
0%
\sqrt {2}+1
0%
None\ of\ these
Explanation
\int _{ \pi /4 }^{ \pi /2 }{ \cfrac { \cos { \theta } }{ \sin ^{ 2 }{ \theta } } }
\sin { \theta } =t
\cos { \theta d\theta } =dt
\int _{ \pi /4 }^{ \pi /2 }{ { t }^{ -2 }dt } ={ \left( \cfrac { t-1 }{ -1 } \right) }_{ \pi /4 }^{ \pi /2 }={ -\left( \cfrac { 1 }{ t } \right) }_{ \pi /4 }^{ \pi /2 }={ \left( +\cfrac { 1 }{ \sin { \theta } } \right) }_{ \pi /4 }^{ \pi /2 }
=-\left( 1-\sqrt { 2 } \right) =\sqrt { 2 } -1
\displaystyle \int_2^ 3\frac{(x+2)^2}{2x^2- 10x +53}dx
is equal to
Report Question
0%
2
0%
1
0%
\dfrac{1}{2}
0%
\dfrac{5}{2}
Solve
\displaystyle \int _{ 0 }^{ 1/2 }{ \dfrac { x\sin ^{ -1 }{ x } }{ \sqrt { 1-{ x }^{ 2 } } } dx= }
Report Question
0%
\dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 } \pi }{ 12 }
0%
\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 } \pi }{ 12 }
0%
\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 2 } \pi }{ 12 }
0%
None\ of\ these
For n >2,
\displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { \sec ^{ 2 }{ x } dx }{ { \left( \sec { x } +\tan { x } \right) }^{ n } } } = ?
Report Question
0%
\dfrac { 1 }{ { n }^{ 2 }-1 }
0%
\dfrac { n }{ { n }^{ 2 }-1 }
0%
\dfrac { n }{ { n }^{ 2 }+1 }
0%
\dfrac { 2 }{ { n }^{ 2 }-1 }
Explanation
\int_{0}^{\frac{\pi}{2}} \dfrac{\sec ^2xdx}{(\sec x+\tan x)^n}
substitute
\sec x+\tan x = t\rightarrow \sec x dx = \dfrac{dt}{t}\Rightarrow x(0,\dfrac{\pi}{2})\rightarrow t(1,\infty )
\sec x = \dfrac{1}{2}\left ( t+\dfrac{1}{t} \right )
\int_{0}^{\frac{\pi}{2}} \dfrac{\sec ^2xdx}{(\sec x+\tan x)^n}=\int_{1}^{\infty } \dfrac{\frac{1}{2}\left ( t+\frac{1}{t} \right )\frac{dt}{t}}{t^n}
=\dfrac{1}{2}\int_{1}^{\infty }\left ( \dfrac{1}{t}+\dfrac{1}{t^{n+2}} \right )dt
=\left [ \dfrac{t^{-n+1}}{-n+1} +t^{-n+1}+\dfrac{t^{-(n+1)}(n+2)}{-(n+1)}\right ]_1^\infty
=-\dfrac{1}{2} \left [\dfrac{1}{-n+1}+1-\dfrac{n+2}{n+1} \right ]
=-\dfrac{1}{2} \left [ \dfrac{n^2+2n-1+1-n^2}{1-n^2} \right ]
=\dfrac{n}{n^2-1}
Let
I=\displaystyle\int _{ 0 }^{ 1 }{ \sqrt { \dfrac { 1+\sqrt { x } }{ 1-\sqrt { x } } } dx }
and
J=\displaystyle\int _{ 0 }^{ 1 }{ \sqrt { \dfrac { 1-\sqrt { x } }{ 1+\sqrt { x } } } dx }
, then the correct statement is
Report Question
0%
I+J=4
0%
I-J=\pi
0%
I=\dfrac{2+\pi}{2}
0%
J=\dfrac{4-\pi}{2}
\int _{ -\pi /4 }^{ \pi /4 }{ ln\sqrt { 1+\sin { 2x } } dx }
has the value equal to:
Report Question
0%
-\dfrac {\pi}{4}l\ n2
0%
-\dfrac {\pi}{2}l\ n2
0%
-\dfrac {\pi}{8}l\ n2
0%
-\dfrac {\pi}{16}l\ n2
\int _{ -1 }^{ 1 }{ x } \tan { ^{ -1 } } xdx
Report Question
0%
\left( \frac { \pi }{ 2 } -1 \right)
0%
\left( \frac { \pi }{ 2 } +1 \right)
0%
(\pi-1)
0%
None
\int _{ 0 }^{ 2\pi }{ \sqrt { 1+\sin { \dfrac { x }{ 2 } } } dx } =
Report Question
0%
0
0%
2
0%
8
0%
4
\displaystyle\int^{1}_0\sqrt{x(1-x)}dx=
.
Report Question
0%
\dfrac{\pi}{8}
0%
\dfrac{3\pi}{8}
0%
\dfrac{5\pi}{4}
0%
\dfrac{\pi}{2}
Explanation
We are given,
I=\displaystyle \int \sqrt {x(1-x)}dx
let
x=\sin^2 \theta \ \Rightarrow \ dx=2\sin \theta . \cos \theta \ d\theta =\sin 2\theta \ d\theta
(differentiating both side) & (chain rule)
now when
x=0, \sin^2 \theta =0\ \Rightarrow \theta =0
& when
x=1, \sin^2 \theta =1\ \Rightarrow \theta =\dfrac {\pi}{2}
I=\displaystyle \int_{0}^{\pi /2}\sqrt {\sin^2 \theta (1-\sin^2 \theta)} (\sin 2\theta \ d\theta)
=\displaystyle \int_{0}^{\pi /2}\sqrt {\sin^2 \theta .\cos^2 \theta} (\sin 2 \theta) d\theta
=\displaystyle \int_{0}^{\pi /2} |\sin \theta . \cos \theta| \sin 2\theta \ d\theta
(here
\sin \theta . \cos \theta
are positive in
[0, \pi /2
])
I=\displaystyle \int_{0}^{\pi /2} (\sin \theta . \cos \theta). \sin 2\theta \ d\theta
=\dfrac {1}{2} \displaystyle \int_{0}^{\pi /2} (2\sin \theta \cos \theta ) \sin 2\theta \ d\theta
(multiply & divide the integration by
2
to get
2\cos \theta \sin \theta =\sin 2\theta
)
I=\dfrac {1}{2} \displaystyle \int_{0}^{\pi /2} \sin^2 2\theta \ d\theta
I=\dfrac {1}{2} \displaystyle \int_{0}^{\pi /2} \left (\dfrac {1-\cos 4\theta}{2}\right) d\theta
=\dfrac {1}{2} \left (\displaystyle \int_{0}^{\pi /2} \left (\dfrac {1}{2} d\theta\right)-\displaystyle \int_{0}^{\pi /2}\cos 4\theta \ d\theta \right)
I=\dfrac {1}{2}\left [\left (\dfrac {\theta}{2}\right)_0^{\pi /2} -\left (\dfrac {\sin 4\theta}{4}\right)_0^{\pi /2} \right]
=\dfrac {1}{2} \left [\left (\dfrac {\pi}{4}-0\right)-\left (\dfrac {\sin 2\theta}{4}-\dfrac {\sin 0}{4}\right) \right]
=\dfrac {1}{4}\left (\dfrac {\pi}{4}-0 \right)
\boxed {I=\dfrac {\pi}{8}}
If
{ I }_{ 1 }=\int _{ x }^{ 1 }{ \cfrac { 1 }{ 1+{ t }^{ 2 } } } dt
and
{ I }_{ 2 }=\int _{ 1 }^{ 1/x }{ \cfrac { 1 }{ 1+{ t }^{ 2 } } } dt
for x > 0, then
Report Question
0%
{ I }_{ 1 }={ I }_{ 2 }
0%
{ I }_{ 1 }>{ I }_{ 2 }
0%
{ I }_{ 2 }>{ I }_{ 1 }
0%
None of these.
\displaystyle \overset{\pi/2}{\underset{0}{\int}} \dfrac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}
equals-
Report Question
0%
\pi/ab
0%
2\pi/ab
0%
ab/ \pi
0%
\pi/2ab
Explanation
I=\displaystyle\int^{\pi/2}_0\dfrac{dx}{a^2\cos^2x+b^2\sin^2x}
=\displaystyle\int^{\pi/2}_0\dfrac{\sec^2xdx}{a^2+b^2\tan^2x}
Let
\tan x=t
x=0, \tan x=0
\sec^2xdx=dt
x=\pi/2, \tan x=\infty
\Rightarrow \displaystyle\int^{\infty}_0\dfrac{dt}{a^2+b^2t^2}=\dfrac{1}{b^2}\displaystyle\int^{\infty}_0\dfrac{dt}{\left(\dfrac{a^2}{b^2}+t^2\right)}
\Rightarrow \dfrac{1}{b^2}\times \dfrac{1}{(a/b)}\left[\tan^{-1}\left(\dfrac{t}{(a/b)}\right)\right]^{\infty}_0
=\dfrac{1}{ab}\left[\tan^{-1}(\infty)-\tan^{-1}(0)\right]
=\dfrac{1}{ab}[\pi/2]
\Rightarrow \dfrac{\pi}{2ab}
.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page