Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 10 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Definite Integrals
Quiz 10
Let
u
=
∞
∫
0
d
x
x
4
+
7
x
2
+
1
&
v
=
∞
∫
0
x
2
d
x
x
4
+
7
x
2
+
1
then:
Report Question
0%
v > u
0%
6v =
π
0%
3
u
+
2
v
=
5
π
/
6
0%
u
+
v
=
π
/
3
Explanation
v
=
∫
∞
0
x
2
d
x
x
4
+
7
x
2
+
1
put
x
=
1
t
⇒
d
x
=
−
1
t
2
d
t
v
=
−
∫
0
∞
1
t
2
⋅
1
t
2
d
t
1
t
4
+
1
t
2
+
1
=
∫
∞
0
d
x
x
4
+
7
x
2
+
1
v=u hence
2
u
=
∫
∞
0
(
x
2
+
1
x
4
+
7
x
2
+
1
)
d
x
=
∫
∞
0
(
1
+
1
x
2
x
2
+
1
x
2
+
7
)
d
x
=
∫
∞
0
d
(
x
−
1
x
)
(
x
−
1
x
)
2
+
3
2
=
∫
∞
0
d
t
t
2
+
9
2
3
[
tan
−
1
t
3
]
∞
0
2
u
=
π
/
3
If
I
=
∫
15
8
d
x
(
x
−
3
)
√
x
+
1
then
I
equals
Report Question
0%
1
2
log
5
3
0%
2
log
1
3
0%
1
2
−
log
1
5
0%
2
log
5
3
Explanation
Put
√
x
+
1
=
t
or
x
+
1
=
t
2
∴
I
=
∫
4
3
2
t
(
t
2
−
4
)
t
d
t
=
2
(
2
)
(
2
)
log
|
t
−
2
t
+
2
|
]
4
3
=
1
2
[
log
1
3
−
log
1
5
]
=
1
2
log
5
3
37 If
n
>
1
,
and
I
=
∫
∞
0
d
x
(
x
+
√
1
+
x
2
)
n
then
I
equals
Report Question
0%
n
n
2
−
1
0%
2
n
n
2
−
1
0%
n
2
(
n
2
−
1
)
0%
√
n
2
−
1
Explanation
As
x
and
√
1
+
x
2
are involved,
put
√
1
−
x
2
=
t
−
x
or
1
+
x
2
=
t
2
−
2
t
x
+
x
2
⇒
x
=
1
2
(
t
−
1
t
)
⇒
d
x
=
1
2
(
1
+
1
t
2
)
∴
I
=
∫
∞
0
1
2
(
1
+
1
t
2
)
d
t
t
n
=
1
2
(
t
−
n
+
1
1
−
n
−
t
−
n
−
1
n
+
1
)
]
∞
1
=
1
2
(
1
1
−
n
1
t
n
−
1
−
1
n
+
1
1
t
n
+
1
)
]
∞
1
=
0
+
1
2
(
1
n
−
1
+
1
n
+
1
)
=
n
n
2
−
1
A function
f
is defined by
f
(
x
)
=
1
2
r
−
1
,
1
2
r
<
x
≤
1
2
r
−
1
,
r
=
1
,
2
,
3
,
.
.
.
.
.
then the value of
∫
1
0
f
(
x
)
d
x
is equal
Report Question
0%
1
3
0%
1
4
0%
2
3
0%
1
2
Explanation
∫
1
0
f
(
x
)
d
x
=
∞
∑
r
=
1
∫
2
−
(
r
−
1
)
2
−
r
1
2
r
−
1
d
x
=
∞
∑
r
=
1
1
2
r
−
1
[
2
−
(
r
−
1
)
−
2
−
r
]
=
∞
∑
1
2
−
2
(
r
−
1
)
−
∞
∑
1
2
−
2
r
+
1
=
(
2
2
−
2
)
∞
∑
1
2
−
2
r
=
2
⋅
1
4
⋅
1
1
−
1
/
4
=
2
3
⋅
If
∫
α
0
d
x
1
−
cos
α
cos
x
=
A
sin
α
+
B
(
a
≠
0
)
Then possible values of
A
and
B
are
Report Question
0%
A
=
π
2
,
B
=
0
0%
A
=
π
4
,
B
=
π
4
sin
α
0%
A
=
π
6
,
B
=
π
sin
α
0%
A
=
π
,
B
=
π
sin
α
Explanation
Let
I
=
∫
α
0
d
x
1
−
cos
α
cos
α
=
∫
α
0
d
x
(
cos
2
x
2
+
sin
2
x
2
)
−
cos
α
(
cos
2
x
2
−
sin
2
x
2
)
=
∫
α
0
d
x
(
1
−
cos
α
)
cos
2
x
2
+
(
1
+
cos
α
)
sin
2
x
2
=
∫
α
0
d
x
2
sin
2
α
2
cos
2
x
2
+
2
cos
2
α
2
sin
2
x
2
=
1
2
∫
α
0
sec
2
α
2
sec
2
x
2
tan
2
α
2
+
tan
2
x
2
d
x
put
tan
x
2
=
t
⇒
1
2
sec
2
x
2
d
x
=
d
t
∴
I
=
∫
tan
α
2
0
sec
2
α
2
t
2
+
tan
2
α
2
d
t
=
sec
2
α
2
cot
α
2
[
tan
−
1
(
t
tan
α
2
)
]
tan
α
2
0
=
2
sin
α
.
π
4
=
π
2
sin
α
A
=
π
2
,
B
=
0
or
A
=
π
4
,
B
=
π
4
sin
α
∫
e
e
e
e
e
e
e
d
x
x
l
n
x
⋅
l
n
(
l
n
x
)
⋅
l
n
(
l
n
(
l
n
x
)
)
equals
Report Question
0%
1
0%
1/e
0%
e-1
0%
1+e
Explanation
Let
I
=
∫
e
e
e
e
e
e
e
1
x
log
x
.
log
(
log
x
)
.
log
(
log
(
log
x
)
)
d
x
Substitute
log
(
log
x
)
=
t
⇒
1
x
log
x
d
x
=
d
t
I
=
∫
e
e
e
1
t
log
t
d
t
=
[
log
log
t
]
e
e
e
=
[
1
−
0
]
=
1
If
f
(
x
)
=
∫
1
0
(
x
f
(
t
)
+
1
)
d
t
,
t
h
e
n
∫
3
0
f
(
x
)
d
x
=
12
because
Statement-2: f(x) = 3x + 1
Report Question
0%
Statements-1 is true, statements-2 is true and statements-2 is correct explanation for statement-1.
0%
Statements-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statements-1.
0%
Statements-1 is true, statements-2 is false.
0%
Statements-1 is false, statements-2 is true.
Value of
∫
π
/
2
0
sin
4
Θ
sin
Θ
d
Θ
is
Report Question
0%
1
/
3
0%
2
/
3
0%
1
0%
4
/
3
Explanation
I
=
∫
π
/
2
0
sin
4
Θ
sin
Θ
d
Θ
=
∫
π
/
2
0
sin
4
Θ
csc
Θ
d
Θ
=
∫
π
/
2
0
(
2
cos
3
Θ
+
2
cos
Θ
−
6
sin
2
Θ
cos
Θ
)
d
Θ
=
[
−
2
sin
3
Θ
+
10
sin
Θ
3
+
2
3
sin
Θ
cos
2
Θ
]
π
/
2
0
=
4
3
Evaluate
∫
1
0
(
t
x
+
1
−
x
)
n
d
x
,
where n is a positive integer and t is a parameter independent of x. Hence
∫
1
0
x
k
(
1
−
x
)
n
−
k
d
x
=
P
[
n
C
k
(
n
+
1
)
]
f
o
r
k
=
0
,
1
,
.
.
.
.
.
.
n
, then
P
=
Report Question
0%
2
0%
1
0%
3
0%
None of these
Explanation
Let
I
=
∫
1
0
(
t
x
+
1
−
x
)
n
d
x
=
∫
1
0
{
(
t
−
1
)
x
+
1
}
n
d
x
=
[
(
t
−
1
)
x
+
1
n
+
1
(
n
+
1
)
(
t
−
1
)
]
1
0
=
1
n
+
1
(
t
n
+
1
−
1
t
−
1
)
=
1
n
+
1
(
1
+
t
+
t
2
+
.
.
.
t
n
)
...(1)
Again
∫
1
0
(
t
x
+
1
−
x
)
n
d
x
=
∫
1
0
[
(
1
−
x
)
+
t
x
]
n
d
x
=
∫
1
0
[
n
C
0
(
1
−
x
)
n
+
n
C
1
(
1
−
x
)
n
−
1
(
t
x
)
+
n
C
2
(
1
−
x
)
n
−
2
(
t
x
)
2
+
.
.
.
+
n
C
n
(
t
x
)
n
]
d
x
=
∫
1
0
n
∑
r
=
1
n
C
r
(
1
−
x
)
n
−
r
(
t
x
)
r
d
x
=
n
∑
r
=
1
n
C
r
[
∫
1
0
(
1
−
x
)
n
−
r
x
r
d
x
]
t
r
...(2)
From (1) and (2)
n
∑
r
=
1
n
C
r
[
∫
1
0
(
1
−
x
)
n
−
r
.
x
r
d
x
]
t
r
=
1
n
+
1
(
1
+
t
+
.
.
.
t
n
)
On equating coefficient of
t
k
on both sides , we get
n
C
k
[
∫
1
0
(
1
−
x
)
n
−
r
,
x
r
d
x
]
⇒
∫
1
0
(
1
−
x
)
n
−
k
x
h
d
x
=
1
(
n
+
1
)
n
C
k
For x > 0, let f(x) =
∫
x
1
l
o
g
t
1
+
t
d
t
. Then f(x) + f
(
1
x
)
is equal to:
Report Question
0%
1
4
l
o
g
x
2
0%
log x
0%
1
2
(
l
o
g
x
)
2
0%
1
4
(
l
o
g
x
)
2
Explanation
f
(
x
)
=
∫
x
1
log
t
1
+
t
−
−
(
1
)
f
(
1
x
)
=
∫
1
/
x
1
log
t
1
+
t
Put t=1/u
f
(
1
x
)
=
∫
x
1
−
u
.
log
u
(
1
+
u
)
−
d
u
u
2
f
(
1
x
)
=
∫
x
1
log
u
u
(
1
+
u
)
d
u
−
−
(
2
)
Add (1) and (2)
=
∫
x
1
log
u
u
d
u
z
=
l
o
g
u
d
z
=
d
u
u
∫
x
1
z
d
z
=
1
2
(
log
x
)
2
The value of
∫
1
/
√
2
0
sin
−
1
x
(
1
−
x
2
)
3
/
2
d
x
is
Report Question
0%
π
2
−
log
2
0%
π
4
−
1
2
log
2
0%
π
2
+
1
2
log
2
0%
π
−
1
2
log
2
Explanation
Let
l
=
∫
1
/
√
2
0
sin
−
1
x
(
1
−
x
2
)
3
/
2
d
x
When
x
=
0
, then
sin
t
=
0
=
sin
0
⇒
t
=
0
When
x
=
1
√
2
, then
sin
t
=
1
√
2
=
sin
π
4
⇒
t
=
π
4
Put
x
=
sin
t
d
x
=
cos
t
d
t
∴
l
=
∫
π
/
4
0
t
cos
3
t
⋅
cos
t
d
t
=
∫
π
/
4
0
t
sec
2
t
d
t
=
[
t
⋅
tan
t
]
π
/
4
0
−
∫
π
/
4
0
tan
t
d
t
=
π
4
−
[
log
sec
t
]
π
/
4
0
=
π
4
−
log
√
2
−
0
=
π
4
−
log
2
1
/
2
=
π
4
−
1
2
log
2
Evaluate
∫
π
/
4
0
cos
x
−
sin
x
10
+
sin
2
x
d
x
Report Question
0%
1
3
(
tan
−
1
√
2
3
+
tan
−
1
1
3
)
0%
1
3
(
tan
−
1
√
1
3
−
cot
−
1
2
3
)
0%
1
3
(
tan
−
1
√
2
3
−
tan
−
1
1
3
)
0%
1
3
(
tan
−
1
√
1
3
−
cot
−
1
1
3
)
Explanation
Let
I
=
∫
π
4
0
cos
x
−
sin
x
10
+
sin
2
x
d
x
Put
cos
x
+
sin
x
=
t
⇒
(
−
sin
x
+
cos
x
)
d
x
=
d
t
I
=
∫
√
2
1
1
10
+
(
t
2
−
1
)
d
t
=
∫
√
2
1
1
t
2
+
9
d
t
=
1
3
[
tan
−
1
t
3
]
√
2
1
=
1
3
(
tan
−
1
√
2
3
−
tan
−
1
1
3
)
The value of
∫
4
3
√
(
4
−
x
)
(
x
−
3
)
d
x
is
Report Question
0%
π
16
0%
π
8
0%
π
4
0%
π
2
Explanation
Let
I
=
∫
4
3
√
(
4
−
x
)
(
x
−
3
)
d
x
=
∫
4
3
√
−
x
2
+
7
x
−
12
d
x
=
∫
4
3
√
−
(
x
2
−
7
x
+
49
4
−
49
4
)
−
12
d
x
=
∫
4
3
√
−
(
x
−
7
2
)
2
+
49
4
−
12
d
x
=
∫
4
3
√
1
4
−
(
x
−
7
2
)
2
d
x
Let
t
=
x
−
7
2
→
d
t
=
d
x
∴
Upper limit
=
1
2
and lower limit
=
−
1
2
=
∫
1
/
2
−
1
/
2
√
(
1
2
)
2
−
t
2
d
t
=
2
∫
1
/
2
0
√
(
1
2
)
2
−
t
2
d
x
=
2
[
t
2
√
1
4
−
t
2
+
1
8
sin
−
1
2
t
]
1
2
0
=
2
[
0
+
1
8
×
π
2
]
=
π
8
The value of the integral
∫
1
1
3
(
x
−
x
3
)
1
3
x
4
d
x
Report Question
0%
6
0%
0
0%
3
0%
4
Explanation
Let
I
=
∫
1
1
/
3
(
x
−
x
3
)
1
3
x
4
d
x
Put
x
=
sin
θ
⇒
d
x
=
cos
θ
d
θ
When
x
=
1
3
,
θ
=
sin
−
1
(
1
3
)
and when
x
=
1
,
θ
=
π
2
⇒
I
=
∫
π
2
sin
−
1
(
1
3
)
(
sin
θ
−
sin
3
θ
)
1
3
sin
4
θ
c
o
s
θ
d
θ
=
∫
π
2
sin
−
1
(
1
3
)
(
sin
θ
)
1
3
(
1
−
sin
2
θ
)
1
3
sin
4
θ
cos
θ
d
θ
=
∫
π
2
sin
−
1
(
1
3
)
(
sin
θ
)
1
3
(
cos
θ
)
2
3
sin
4
θ
cos
θ
d
θ
=
∫
π
2
sin
−
1
(
1
3
)
(
sin
θ
)
1
3
(
cos
θ
)
2
3
sin
2
θ
sin
2
θ
cos
θ
d
θ
=
∫
π
2
sin
−
1
(
1
3
)
(
cos
θ
)
5
3
(
sin
θ
)
5
3
c
o
s
e
c
2
θ
d
θ
=
∫
π
2
s
i
n
−
1
(
1
3
)
(
cot
θ
)
5
3
c
o
s
e
c
2
θ
d
θ
Put
cot
θ
=
t
⇒
−
c
o
s
e
c
2
θ
d
θ
=
d
t
When
θ
=
sin
−
1
(
1
3
)
,
t
=
2
√
2
and when
θ
=
π
2
,
t
=
0
∴
I
=
−
∫
0
2
√
2
(
t
)
5
3
d
t
⇒
I
=
∫
2
√
2
0
(
t
)
5
3
d
t
=
[
3
8
(
t
)
8
3
]
2
√
2
0
=
3
8
[
(
2
√
2
)
8
3
]
=
3
8
[
(
√
8
)
8
3
]
=
3
8
[
(
8
)
4
3
]
=
3
8
[
16
]
=
3
×
2
=
6
Hence, the correct Answer is A.
If
I
m
=
e
∫
1
(
l
n
x
)
m
d
x
,
where
m
ϵ
N
,
then
I
10
+
10
I
9
is equal to-
Report Question
0%
e
10
0%
e
10
10
0%
e
0%
e-1
If I =
2
∫
−
3
(|x + 1 | + |x + 2| + |x - 1|)dx, then I equal
Report Question
0%
31
2
0%
35
2
0%
47
2
0%
None of these
∫
π
/
3
0
cos
θ
5
−
4
sin
θ
d
θ
equal to.
Report Question
0%
1
4
l
o
g
(
5
5
+
2
√
3
)
0%
1
4
l
o
g
(
5
5
−
2
√
3
)
0%
1
4
l
o
g
(
5
+
2
√
3
5
)
0%
1
4
l
o
g
(
5
−
2
√
3
5
)
Explanation
I
=
∫
π
/
3
0
cos
θ
5
−
4
sin
θ
d
θ
Let
5
−
4
sin
θ
=
t
⇒
cos
θ
d
θ
=
−
d
t
4
I
=
∫
5
−
2
√
3
5
−
d
t
4
t
I
=
1
4
∫
5
5
−
2
√
3
d
t
t
I
=
1
4
[
log
t
]
5
5
−
2
√
3
I
=
1
4
[
log
5
−
log
(
5
−
2
√
3
)
]
I
=
1
4
[
log
(
5
5
−
2
√
3
)
]
∴
I
=
1
4
log
(
5
5
−
2
√
3
)
The value of
∫
3
1
/
3
tan
(
x
2
+
1
x
2
)
sin
(
x
+
1
x
)
d
x
x
is
Report Question
0%
0
0%
3
/
2
0%
1
/
2
0%
4
/
3
Let
I
1
=
∫
1
0
e
x
d
x
1
+
x
and
I
2
=
∫
1
0
x
2
d
x
e
x
3
(
2
−
x
3
)
, then
I
1
I
2
is
Report Question
0%
3
/
e
0%
e
/
3
0%
3
e
0%
1
/
3
e
Explanation
Given :
I
1
=
∫
1
0
e
x
d
x
(
1
+
x
)
I
2
=
∫
1
0
x
2
d
x
e
x
3
(
2
−
x
3
)
I
1
=
∫
1
0
e
x
d
x
(
1
+
x
)
I
2
=
∫
1
0
x
2
d
x
e
x
3
(
2
−
x
3
)
Let :
1
−
x
3
=
t
x
→
0
t
→
1
−
3
x
2
=
d
t
x
→
1
t
→
0
I
2
=
−
∫
1
0
1
3
e
t
−
1
(
1
+
t
)
d
t
=
1
3
e
∫
1
0
e
t
(
1
+
t
)
d
t
I
1
I
2
=
∫
1
0
e
x
d
x
(
1
+
x
)
1
3
e
∫
1
0
e
t
(
1
+
t
)
d
t
=
3
e
Hence the correct answer is
3
e
The value of
∫
3
1
/
3
t
a
n
(
x
2
−
1
x
2
)
s
i
n
(
x
+
1
x
)
d
x
x
is
Report Question
0%
0
0%
3
2
0%
1
2
0%
4
3
∫
π
/
2
0
sin
8
x
cos
2
x
d
x
is equal to
Report Question
0%
π
512
0%
3
π
512
0%
5
π
512
0%
7
π
512
The value of the integral
∫
1
0
x
α
−
1
log
x
d
x
is
Report Question
0%
log
(
α
+
1
)
0%
2
log
(
α
+
1
)
0%
3
log
α
0%
none of these
Explanation
I
(
α
)
=
∫
1
0
x
α
−
1
log
x
d
x
Differentiating with respect to
α
,
we get
,
I
′
(
α
)
=
∫
1
0
x
α
d
x
=
1
α
+
1
We need to solve this simple differential equation
:
I
′
(
α
)
=
1
α
+
1
On solving, we get,
I
(
α
)
=
log
(
α
+
1
)
+
C
Now, from the initial equation, we can find that
I
(
0
)
=
0
I
(
0
)
=
log
(
1
)
+
C
=
0
⇒
C
=
0
So,
I
(
α
)
=
log
(
α
+
1
)
The value of the definite integral
∫
π
/
2
0
(
cos
10
x
⋅
sin
12
x
)
d
x
, is equal to.
Report Question
0%
1
10
0%
1
11
0%
1
12
0%
1
22
Explanation
Let
I
=
∫
π
/
2
0
(
cos
10
x
.
sin
12
x
)
d
x
cos
10
x
.
sin
12
x
=
cos
10
x
.
sin
(
11
x
+
x
)
=
cos
10
x
.
(
sin
11
x
.
cos
x
+
cos
11
x
.
sin
x
)
=
−
1
11
(
−
11
sin
11
x
.
cos
11
x
−
11
cos
11
x
.
cos
10
x
.
sin
x
)
=
−
1
11
×
d
d
x
(
cos
11
x
.
cos
11
x
)
... (1)
Therefore,
I
=
(
−
1
11
)
∫
π
/
2
0
d
d
x
(
cos
11
x
.
cos
11
x
)
d
x
I
=
−
1
11
×
cos
11
x
.
cos
11
x
]
π
/
2
0
I
=
−
1
11
×
(
0
−
1
)
I
=
1
11
Correct answer is option
B.
If
I
=
∫
π
/
6
−
π
/
6
π
+
4
x
5
1
−
sin
(
|
x
|
+
π
6
)
d
x
, then I equals to
Report Question
0%
4
π
0%
2
π
+
1
√
3
0%
2
π
−
1
√
3
0%
4
π
+
√
3
−
1
√
3
If,
∫
π
2
0
s
i
n
2
x
(
1
+
c
o
s
x
2
)
d
x
=
0
Report Question
0%
4
−
π
2
0%
π
−
4
2
0%
$$4 - frac{\pi}{2}$
0%
4
+
π
2
I
n
=
∫
e
1
(
l
o
g
x
)
n
d
x
and
I
n
=
A
+
B
I
n
−
1
then
A=........., B=............
Report Question
0%
e
,
−
n
0%
1
/
e
,
n
0%
−
e
,
n
0%
−
e
−
n
∫
x
0
sin
x
1
+
cos
2
x
d
x
=
π
cos
α
1
−
sin
2
α
Report Question
0%
for no value of
α
0%
for exactly two values of
α
in
(
0
,
π
)
0%
for atleast one
α
in
(
π
/
2
,
π
)
0%
for exactly one
α
in
(
0
,
π
/
2
)
What is
∫
1
0
x
(
1
−
x
)
9
d
x
equal to?
Report Question
0%
1
240
0%
1
110
0%
1
132
0%
1
148
Explanation
We need to find
∫
1
0
x
(
1
−
x
)
9
d
x
∫
1
0
x
(
1
−
x
)
9
d
x
=
∫
1
0
(
1
−
x
)
x
9
d
x
=
∫
1
0
(
x
9
−
x
10
)
d
x
=
[
x
10
10
−
x
11
11
]
1
0
=
1
10
−
1
11
=
11
−
10
110
=
1
110
∴
∫
1
0
x
(
1
−
x
)
9
d
x
=
1
110
The value of
∫
14
0
[
x
2
]
[
x
2
−
28
x
+
196
]
+
[
x
2
]
where [x] is the integral part of real x, is
Report Question
0%
14
0%
0
0%
7
0%
49
If
I
1
=
∫
1
0
2
x
2
d
x
,
I
2
=
∫
1
0
2
x
3
d
x
,
I
3
=
∫
2
1
2
x
x
2
d
x
then
Report Question
0%
I
1
>
I
2
0%
I
2
>
I
1
0%
I
3
>
I
4
0%
I
3
=
I
4
E
=
∫
∞
R
G
M
m
x
2
dx , (where
G
,
M
,
m
are constants ) equal to
Report Question
0%
−
G
M
m
R
2
0%
+
G
M
m
R
2
0%
−
G
M
m
R
0%
+
G
M
m
R
∫
4036
0
2
x
2
x
+
1
4036
−
x
d
x
=
.
.
.
.
.
.
.
.
.
.
.
.
Report Question
0%
2018
0%
4035
0%
2017
0%
-2015
If
I
1
=
∫
1
0
2
x
3
d
x
,
I
2
=
∫
1
0
2
x
2
d
x
,
I
3
=
∫
2
1
2
x
2
d
x
and
I
4
=
∫
2
1
2
x
3
d
x
, then
Report Question
0%
I
1
>
I
2
0%
I
2
>
I
1
0%
I
3
>
I
4
0%
I
1
>
I
3
Explanation
Given :-
I
1
=
∫
1
0
2
x
3
d
x
,
I
2
=
∫
1
0
2
x
3
d
x
,
I
3
=
∫
2
1
2
x
2
d
x
and
I
4
=
∫
2
1
2
x
3
d
x
,
As we know
x
2
<
x
3
for
x
∈
(
1
,
2
)
,
So
2
x
3
will also be grater than
2
x
2
for
x
∈
(
0
,
1
)
and
x
∈
(
1
,
2
)
∴
I
1
>
I
2
hence
I
3
=
∫
2
1
2
x
2
d
x
<
I
4
=
∫
2
1
2
x
3
d
x
And also
2
x
2
when
x
∈
(
1
,
2
)
is grater than
2
x
3
for
x
∈
(
0
,
1
)
hence
I
1
=
∫
1
0
2
x
3
d
x
<
I
3
=
∫
2
1
2
x
2
d
x
Hence,
I
1
>
I
2
is correct.
A function
f
(
x
)
which satisfies the relation
f
(
x
)
=
e
x
+
∫
1
0
e
x
f
(
t
)
d
t
, then
f
(
x
)
is
Report Question
0%
e
x
2
−
e
0%
(
e
−
2
)
e
x
0%
2
e
x
0%
e
x
2
Value of the definite integral
∫
1
0
cot
−
1
(
1
−
x
+
x
2
)
d
x
is:
Report Question
0%
π
−
log
2
0%
π
2
−
log
2
0%
π
+
log
2
0%
π
2
+
log
2
If
I
=
∫
π
0
x
sin
x
1
+
c
o
s
2
x
d
x
, then the value of
sin
√
I
, is
Report Question
0%
1
2
0%
0
0%
√
2
2
0%
1
i
f
l
n
=
1
∫
0
x
m
(
ln
x
)
n
d
x
,
a
n
d
l
n
=
1
m
+
1
l
n
−
1
then k is equal to
Report Question
0%
n
0%
-n
0%
m-1
0%
None of these
F
o
r
x
>
0
,let
f
(
x
)
=
∫
2
1
log
t
1
+
t
d
t
,then
f
(
x
)
+
f
(
1
x
)
is equal to:
Report Question
0%
1
4
(
log
x
)
2
0%
1
2
(
log
x
)
2
0%
log
x
0%
1
4
log
x
2
Evaluate the integral,
∫
1
0
cos
(
2
cot
−
1
√
1
−
x
1
+
x
)
d
x
=
Report Question
0%
−
1
/
2
0%
1
/
2
0%
0
0%
1
∫
π
/
2
π
/
4
cos
θ
csc
2
θ
d
θ
=
Report Question
0%
√
2
−
1
0%
1
−
√
2
0%
√
2
+
1
0%
N
o
n
e
o
f
t
h
e
s
e
Explanation
∫
π
/
2
π
/
4
cos
θ
sin
2
θ
sin
θ
=
t
cos
θ
d
θ
=
d
t
∫
π
/
2
π
/
4
t
−
2
d
t
=
(
t
−
1
−
1
)
π
/
2
π
/
4
=
−
(
1
t
)
π
/
2
π
/
4
=
(
+
1
sin
θ
)
π
/
2
π
/
4
=
−
(
1
−
√
2
)
=
√
2
−
1
∫
3
2
(
x
+
2
)
2
2
x
2
−
10
x
+
53
d
x
is equal to
Report Question
0%
2
0%
1
0%
1
2
0%
5
2
Solve
∫
1
/
2
0
x
sin
−
1
x
√
1
−
x
2
d
x
=
Report Question
0%
1
2
+
√
3
π
12
0%
1
2
−
√
3
π
12
0%
1
2
−
√
2
π
12
0%
N
o
n
e
o
f
t
h
e
s
e
For n >2,
∫
π
/
2
0
sec
2
x
d
x
(
sec
x
+
tan
x
)
n
=
?
Report Question
0%
1
n
2
−
1
0%
n
n
2
−
1
0%
n
n
2
+
1
0%
2
n
2
−
1
Explanation
∫
π
2
0
sec
2
x
d
x
(
sec
x
+
tan
x
)
n
substitute
sec
x
+
tan
x
=
t
→
sec
x
d
x
=
d
t
t
⇒
x
(
0
,
π
2
)
→
t
(
1
,
∞
)
sec
x
=
1
2
(
t
+
1
t
)
∫
π
2
0
sec
2
x
d
x
(
sec
x
+
tan
x
)
n
=
∫
∞
1
1
2
(
t
+
1
t
)
d
t
t
t
n
=
1
2
∫
∞
1
(
1
t
+
1
t
n
+
2
)
d
t
=
[
t
−
n
+
1
−
n
+
1
+
t
−
n
+
1
+
t
−
(
n
+
1
)
(
n
+
2
)
−
(
n
+
1
)
]
∞
1
=
−
1
2
[
1
−
n
+
1
+
1
−
n
+
2
n
+
1
]
=
−
1
2
[
n
2
+
2
n
−
1
+
1
−
n
2
1
−
n
2
]
=
n
n
2
−
1
Let
I
=
∫
1
0
√
1
+
√
x
1
−
√
x
d
x
and
J
=
∫
1
0
√
1
−
√
x
1
+
√
x
d
x
, then the correct statement is
Report Question
0%
I
+
J
=
4
0%
I
−
J
=
π
0%
I
=
2
+
π
2
0%
J
=
4
−
π
2
∫
π
/
4
−
π
/
4
l
n
√
1
+
sin
2
x
d
x
has the value equal to:
Report Question
0%
−
π
4
l
n
2
0%
−
π
2
l
n
2
0%
−
π
8
l
n
2
0%
−
π
16
l
n
2
∫
1
−
1
x
tan
−
1
x
d
x
Report Question
0%
(
π
2
−
1
)
0%
(
π
2
+
1
)
0%
(
π
−
1
)
0%
N
o
n
e
∫
2
π
0
√
1
+
sin
x
2
d
x
=
Report Question
0%
0
0%
2
0%
8
0%
4
∫
1
0
√
x
(
1
−
x
)
d
x
=
.
Report Question
0%
π
8
0%
3
π
8
0%
5
π
4
0%
π
2
Explanation
We are given,
I
=
∫
√
x
(
1
−
x
)
d
x
let
x
=
sin
2
θ
⇒
d
x
=
2
sin
θ
.
cos
θ
d
θ
=
sin
2
θ
d
θ
(differentiating both side) & (chain rule)
now when
x
=
0
,
sin
2
θ
=
0
⇒
θ
=
0
& when
x
=
1
,
sin
2
θ
=
1
⇒
θ
=
π
2
I
=
∫
π
/
2
0
√
sin
2
θ
(
1
−
sin
2
θ
)
(
sin
2
θ
d
θ
)
=
∫
π
/
2
0
√
sin
2
θ
.
cos
2
θ
(
sin
2
θ
)
d
θ
=
∫
π
/
2
0
|
sin
θ
.
cos
θ
|
sin
2
θ
d
θ
(here
sin
θ
.
cos
θ
are positive in
[
0
,
π
/
2
])
I
=
∫
π
/
2
0
(
sin
θ
.
cos
θ
)
.
sin
2
θ
d
θ
=
1
2
∫
π
/
2
0
(
2
sin
θ
cos
θ
)
sin
2
θ
d
θ
(multiply & divide the integration by
2
to get
2
cos
θ
sin
θ
=
sin
2
θ
)
I
=
1
2
∫
π
/
2
0
sin
2
2
θ
d
θ
I
=
1
2
∫
π
/
2
0
(
1
−
cos
4
θ
2
)
d
θ
=
1
2
(
∫
π
/
2
0
(
1
2
d
θ
)
−
∫
π
/
2
0
cos
4
θ
d
θ
)
I
=
1
2
[
(
θ
2
)
π
/
2
0
−
(
sin
4
θ
4
)
π
/
2
0
]
=
1
2
[
(
π
4
−
0
)
−
(
sin
2
θ
4
−
sin
0
4
)
]
=
1
4
(
π
4
−
0
)
I
=
π
8
If
I
1
=
∫
1
x
1
1
+
t
2
d
t
and
I
2
=
∫
1
/
x
1
1
1
+
t
2
d
t
for x > 0, then
Report Question
0%
I
1
=
I
2
0%
I
1
>
I
2
0%
I
2
>
I
1
0%
None of these.
π
/
2
∫
0
d
x
a
2
cos
2
x
+
b
2
sin
2
x
equals-
Report Question
0%
π
/
a
b
0%
2
π
/
a
b
0%
a
b
/
π
0%
π
/
2
a
b
Explanation
I
=
∫
π
/
2
0
d
x
a
2
cos
2
x
+
b
2
sin
2
x
=
∫
π
/
2
0
sec
2
x
d
x
a
2
+
b
2
tan
2
x
Let
tan
x
=
t
x
=
0
,
tan
x
=
0
sec
2
x
d
x
=
d
t
x
=
π
/
2
,
tan
x
=
∞
⇒
∫
∞
0
d
t
a
2
+
b
2
t
2
=
1
b
2
∫
∞
0
d
t
(
a
2
b
2
+
t
2
)
⇒
1
b
2
×
1
(
a
/
b
)
[
tan
−
1
(
t
(
a
/
b
)
)
]
∞
0
=
1
a
b
[
tan
−
1
(
∞
)
−
tan
−
1
(
0
)
]
=
1
a
b
[
π
/
2
]
⇒
π
2
a
b
.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page