Processing math: 4%

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 10 - MCQExams.com

Let u=0dxx4+7x2+1&v=0x2dxx4+7x2+1 then:
  • v > u
  • 6v = π
  • 3u+2v=5π/6
  • u+v=π/3
 If I=158dx(x3)x+1 thenI equals
  • 12log53
  • 2log13
  • 12log15
  • 2log53
37 If n > 1, and \displaystyle I=\int _{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^{2}})^{n}} then I  equals
  • \displaystyle \frac{n}{n^{2}-1}
  • \displaystyle \frac{2n}{n^{2}-1}
  • \displaystyle \frac{n}{2(n^{2}-1)}
  • \displaystyle \sqrt{ n^{2}-1}
A function f is defined by \displaystyle f(x)=\frac{1}{2^{r-1}},\frac{1}{2r}<x\leq \frac{1}{2^{r-1}},r=1,2,3,..... then the value of \displaystyle \int _{0}^{1}f(x)dx is equal
  • \cfrac 13
  • \cfrac 14
  • \cfrac 23
  • \cfrac 12
If \displaystyle \int_{0}^{\alpha}\frac{dx}{1-\cos \alpha \cos x}=\frac{A}{\sin \alpha}+B(a\neq 0)
Then possible values of A and B are
  • \displaystyle A=\frac{\pi}{2},B=0
  • \displaystyle A=\frac{\pi}{4},B=\frac{\pi}{4\sin \alpha}
  • \displaystyle A=\frac{\pi}{6},B=\frac{\pi}{\sin \alpha}
  • \displaystyle A=\pi ,B=\frac{\pi}{\sin \alpha}
\displaystyle \int_{e^{e^{e}}}^{e^{e^{e^{e}}}}\frac{dx}{xlnx\cdot ln\left ( lnx \right )\cdot ln\left ( ln\left ( lnx \right ) \right )} equals
  • 1
  • 1/e
  • e-1
  • 1+e
If f\left( x \right) =\int _{ 0 }^{ 1 }{ \left( xf\left( t \right) +1 \right) dt,then\int _{ 0 }^{ 3 }{ f\left( x \right) dx=12 }  }  
because 
Statement-2: f(x) = 3x + 1
  • Statements-1 is true, statements-2 is true and statements-2 is correct explanation for statement-1.
  • Statements-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statements-1.
  • Statements-1 is true, statements-2 is false.
  • Statements-1 is false, statements-2 is true.
Value of \displaystyle \int_{0}^{\pi /2}\displaystyle \frac{\sin 4\Theta }{\sin \Theta }\: d\Theta  is
  • 1/3
  • 2/3
  • 1
  • 4/3
Evaluate \displaystyle \int_{0}^{1}\left ( tx+1-x \right )^{n}dx, where n is a positive integer and t is a parameter independent of x. Hence \displaystyle \int_{0}^{1}x^{k}\left ( 1-x \right )^{n-k}dx=\frac{P}{\left [ ^{n}C_{k}\left ( n+1 \right ) \right ]}for\:k=0,1,......n, then P=
  • 2
  • 1
  • 3
  • None of these
For x > 0, let f(x) = \displaystyle \int_{1}^{x}{ \frac{log t}{1 + t}} dt . Then f(x) + f\displaystyle \left( \frac{1}{x} \right) is equal to:
  • \displaystyle \frac{1}{4} log x^2
  • log x
  • \displaystyle \frac{1}{2} (log x)^2
  • \displaystyle \frac{1}{4} (log x)^2
The value of \displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 }  } }{ \dfrac { \sin ^{ -1 }{ x }  }{ { \left( 1-{ x }^{ 2 } \right)  }^{ { 3 }/{ 2 } } } dx } is
  • \dfrac { \pi }{ 2 } -\log { 2 }
  • \dfrac { \pi }{ 4 } -\dfrac { 1 }{ 2 } \log { 2 }
  • \dfrac { \pi }{ 2 } +\dfrac { 1 }{ 2 } \log { 2 }
  • \pi -\dfrac { 1 }{ 2 } \log { 2 }
Evaluate \displaystyle \int_{0}^{\pi /4}\frac{\cos x-\sin x}{10+\sin 2x}dx
  • \displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{2}}{3}+\tan^{-1} \frac{1}{3} \right )
  • \displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{2}{3} \right )
  • \displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{2}}{3}-\tan^{-1} \frac{1}{3} \right )
  • \displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{1}{3} \right )
The value of \displaystyle \int_{3}^{4}\sqrt {(4 - x)(x - 3)}dx is
  • \dfrac {\pi}{16}
  • \dfrac {\pi}{8}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{2}
The value of the integral \displaystyle \int_{\frac {1}{3}}^1\frac {(x-x^3)^{\frac {1}{3}}}{x^4}dx
  • 6
  • 0
  • 3
  • 4
If { I }_{ m }=\overset { e }{ \underset { 1 }{ \int   }  } (lnx)^{ m }dx, where m\epsilon N,then { I }_{ 10 }+10{ I }_{ 9 } is equal to-
  • { e }^{ 10 }
  • \frac { { e }^{ 10 } }{ 10 }
  • e
  • e-1
If I = \overset { 2 }{ \underset { -3 }{ \int }  } (|x + 1 | + |x + 2| + |x - 1|)dx, then I equal
  • \dfrac{31}{2}
  • \dfrac{35}{2}
  • \dfrac{47}{2}
  • None of these
\displaystyle\int^{\pi /3}_0\frac{\cos \theta}{5-4\sin \theta}d\theta equal to.
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5+2\sqrt{3}}\right)
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5-2\sqrt{3}}\right)
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5+2\sqrt{3}}{5}\right)
  • \displaystyle\frac{1}{4}log\left(\displaystyle\frac{5-2\sqrt{3}}{5}\right)
The value of \int _{ 1/3 }^{ 3 }{ \cfrac { \tan { \left( { x }^{ 2 }+\cfrac { 1 }{ { x }^{ 2 } }  \right)  }  }{ \sin { \left( x+\cfrac { 1 }{ x }  \right)  }  }  } \cfrac { dx }{ x } is 
  • 0
  • 3/2
  • 1/2
  • 4/3
Let I_{1} =\displaystyle  \int_{0}^{1}\dfrac {e^{x}dx}{1 + x} and I_{2} = \displaystyle \int_{0}^{1} \dfrac {x^{2}dx}{e^{x^{3}}(2 - x^{3})}, then \dfrac {I_{1}}{I_{2}} is
  • 3/e
  • e/3
  • 3e
  • 1/3e
The value of \int^3_{1/3}\dfrac{tan(x^2-\dfrac{1}{x^2})}{sin(x+\dfrac{1}{x}) }\dfrac{dx}{x} is 
  • 0
  • \dfrac{3}{2}
  • \dfrac{1}{2}
  • \dfrac{4}{3}
\int _{ 0 }^{ \pi /2 }{ \sin ^{ 8 }{ x } \cos ^{ 2 }{ x } dx } is equal to
  • \cfrac { \pi }{ 512 }
  • \cfrac {3 \pi }{ 512 }
  • \cfrac { 5\pi }{ 512 }
  • \cfrac {7 \pi }{ 512 }
The value of the integral \displaystyle \int_0^1 \dfrac{x^{\alpha}-1}{\log x}dx is
  • \log (\alpha+1)
  • 2\log (\alpha+1)
  • 3\log \alpha
  • none of these
The value of the definite integral \displaystyle\int^{\pi/2}_{0}\left(\cos ^{10}x\cdot \sin 12x\right)dx, is equal to.
  • \displaystyle\frac{1}{10}
  • \displaystyle\frac{1}{11}
  • \displaystyle\frac{1}{12}
  • \displaystyle\frac{1}{22}
If \displaystyle I=\int _{ { -\pi  }/{ 6 } }^{ { \pi  }/{ 6 } }{ \dfrac { \pi +4{ x }^{ 5 } }{ 1-\sin { \left( \left| x \right| +\dfrac { \pi  }{ 6 }  \right)  }  }  } dx, then I equals to
  • 4\pi
  • 2\pi +\dfrac { 1 }{ \sqrt { 3 } }
  • 2\pi -\dfrac { 1 }{ \sqrt { 3 } }
  • 4\pi +\sqrt { 3 } -\dfrac { 1 }{ \sqrt { 3 } }
If, \int^{\frac{\pi}{2}} _0 \frac{sin^2x}{(1 + cosx^2)} dx = 0
  • \frac{4 - \pi}{2}
  • \frac{\pi - 4}{2}
  • $$4 - frac{\pi}{2}$
  • \frac{4 + \pi}{2}
{I}_{n}=\int_{1}^{e}{\left(logx\right)^{n}dx} and {I}_{n}=A+{BI}_{n-1} then
A=........., B=............
  • e,-n
  • 1/e,n
  • -e,n
  • -e-n
\displaystyle \int _{ 0 }^{ x }{ \cfrac { \sin { x }  }{ 1+\cos ^{ 2 }{ x }  }  } dx=\pi \cfrac { \cos { \alpha  }  }{ 1-\sin ^{ 2 }{ \alpha  }  }
  • for no value of \alpha
  • for exactly two values of \alpha in \left( 0,\pi \right)
  • for atleast one \alpha in \left( \pi /2,\pi \right)
  • for exactly one \alpha in \left( 0,\pi /2 \right)
What is \int _{ 0 }^{ 1 }{ x{ \left( 1-x \right)  }^{ 9 }dx } equal to?
  • \dfrac{1}{240}
  • \dfrac{1}{110}
  • \dfrac{1}{132}
  • \dfrac{1}{148}
The value of \int _{ 0 }^{ 14 }{ \dfrac { \left[ { x }^{ 2 } \right]  }{ \left[ { x }^{ 2 }-28x+196 \right] +\left[ { x }^{ 2 } \right]  }  }
where [x] is the integral part of real x, is
  • 14
  • 0
  • 7
  • 49
If I_1 =\int^1_0 2x^2 dx, I_2 =\int^1_0 2^{x3} dx, I_3 =\int^2_1 2x^{x2} dx then 
  • I_1 > I_2
  • I_2 > I_1
  • I_3 > I_4
  • I_3 = I_4
\displaystyle E = \int_{R}^{\infty}\dfrac{GMm}{x^2} dx , (where G , M , m are constants ) equal to
  • -\dfrac{GMm}{R^2}
  • +\dfrac{GMm}{R^2}
  • -\dfrac{GMm}{R}
  • +\dfrac{GMm}{R}
\int _{ 0 }^{ 4036 }{ \dfrac { { 2 }^{ x } }{ { 2 }^{ x }+{ 1 }^{ 4036-x } }  } dx=............
  • 2018
  • 4035
  • 2017
  • -2015
If I_{1} = \int_{0}^{1} 2^{x^{3}} dx, I_{2} = \int_{0}^{1}2^{x^{2}}dx, I_{3} = \int_{1}^{2}2^{x^{2}}dx and I_{4} = \int_{1}^{2}2^{x^{3}}dx, then
  • I_{1} > I_{2}
  • I_{2} > I_{1}
  • I_{3} > I_{4}
  • I_{1} > I_{3}
A function f(x) which satisfies the relation f(x) = e^{x} + \int_{0}^{1} e^{x}f(t)dt, then f(x) is
  • \dfrac {e^{x}}{2 - e}
  • (e - 2)e^{x}
  • 2e^{x}
  • \dfrac {e^{x}}{2}
Value of the definite integral \displaystyle \int _{ 0 }^{ 1 }{ \cot ^{ -1 }{ \left( 1-x+{ x }^{ 2 } \right)  } dx } is:
  • \pi -\log { 2 }
  • \dfrac{\pi}{2} -\log { 2 }
  • \pi +\log { 2 }
  • \dfrac{\pi}{2} +\log { 2 }
If I=\int _{ 0 }^{ \pi  }{ \frac { x\sin { x }  }{ 1+{ cos }^{ 2 }x } dx } , then the value of \sin { \sqrt { I }  } , is
  • \frac { 1 }{ 2 }
  • 0
  • \frac { \sqrt { 2 } }{ 2 }
  • 1
if\,{l_n} = \int\limits_0^1 {{x^m}} {\left( {\ln x} \right)^n}dx,\,and\,{l_n} = \frac{1}{{m + 1}}{l_{n - 1}} then k is equal to
  • n
  • -n
  • m-1
  • None of these
For x>0,let  f\left( x \right) =\int _{ 1 }^{ 2 }{ \dfrac { \log { t }  }{ 1+t }  } dt,thenf\left( x \right) +f\left( \dfrac { 1 }{ x }  \right)is equal to:
  • \dfrac { 1 }{ 4 } \left( \log { x } \right) ^{ 2 }
  • \dfrac { 1 }{ 2 } \left( \log { x } \right) ^{ 2 }
  • \log { x }
  • \dfrac { 1 }{ 4 } \log { { x }^{ 2 } }
Evaluate the integral, \int _{ 0 }^{ 1 }{ \cos { \left( 2\cot ^{ -1 }{ \sqrt { \dfrac { 1-x }{ 1+x }  }  }  \right)  }  } dx=
  • -1/2
  • 1/2
  • 0
  • 1
\int _{ \pi /4 }^{ \pi /2 }{ \cos { \theta  } \csc ^{ 2 }{ \theta  } d\theta = }
  • \sqrt {2}-1
  • 1-\sqrt {2}
  • \sqrt {2}+1
  • None\ of\ these
\displaystyle \int_2^ 3\frac{(x+2)^2}{2x^2- 10x +53}dx is equal to
  • 2
  • 1
  • \dfrac{1}{2}
  • \dfrac{5}{2}
Solve \displaystyle \int _{ 0 }^{ 1/2 }{ \dfrac { x\sin ^{ -1 }{ x }  }{ \sqrt { 1-{ x }^{ 2 } }  } dx= }
  • \dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 } \pi }{ 12 }
  • \dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 } \pi }{ 12 }
  • \dfrac { 1 }{ 2 } -\dfrac { \sqrt { 2 } \pi }{ 12 }
  • None\ of\ these
For n >2,        \displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { \sec ^{ 2 }{ x } dx }{ { \left( \sec { x } +\tan { x }  \right)  }^{ n } }  } = ?
  • \dfrac { 1 }{ { n }^{ 2 }-1 }
  • \dfrac { n }{ { n }^{ 2 }-1 }
  • \dfrac { n }{ { n }^{ 2 }+1 }
  • \dfrac { 2 }{ { n }^{ 2 }-1 }
Let I=\displaystyle\int _{ 0 }^{ 1 }{ \sqrt { \dfrac { 1+\sqrt { x }  }{ 1-\sqrt { x }  }  } dx } and J=\displaystyle\int _{ 0 }^{ 1 }{ \sqrt { \dfrac { 1-\sqrt { x }  }{ 1+\sqrt { x }  }  } dx }, then the correct statement is
  • I+J=4
  • I-J=\pi
  • I=\dfrac{2+\pi}{2}
  • J=\dfrac{4-\pi}{2}
\int _{ -\pi /4 }^{ \pi /4 }{ ln\sqrt { 1+\sin { 2x }  } dx } has the value equal to:
  • -\dfrac {\pi}{4}l\ n2
  • -\dfrac {\pi}{2}l\ n2
  • -\dfrac {\pi}{8}l\ n2
  • -\dfrac {\pi}{16}l\ n2
\int _{ -1 }^{ 1 }{ x } \tan { ^{ -1 } } xdx
  • \left( \frac { \pi }{ 2 } -1 \right)
  • \left( \frac { \pi }{ 2 } +1 \right)
  • (\pi-1)
  • None
\int _{ 0 }^{ 2\pi  }{ \sqrt { 1+\sin { \dfrac { x }{ 2 }  }  } dx } =
  • 0
  • 2
  • 8
  • 4
\displaystyle\int^{1}_0\sqrt{x(1-x)}dx=.
  • \dfrac{\pi}{8}
  • \dfrac{3\pi}{8}
  • \dfrac{5\pi}{4}
  • \dfrac{\pi}{2}
If { I }_{ 1 }=\int _{ x }^{ 1 }{ \cfrac { 1 }{ 1+{ t }^{ 2 } }  } dt and { I }_{ 2 }=\int _{ 1 }^{ 1/x }{ \cfrac { 1 }{ 1+{ t }^{ 2 } }  } dt for x > 0, then 
  • { I }_{ 1 }={ I }_{ 2 }
  • { I }_{ 1 }>{ I }_{ 2 }
  • { I }_{ 2 }>{ I }_{ 1 }
  • None of these.
\displaystyle \overset{\pi/2}{\underset{0}{\int}} \dfrac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} equals-
  • \pi/ab
  • 2\pi/ab
  • ab/ \pi
  • \pi/2ab
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers