CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 10 - MCQExams.com

Let $$\displaystyle u = \overset{\infty}{\underset{0}{\int}} \dfrac{dx}{x^4 + 7x^2 + 1} \& v = \overset{\infty}{\underset{0}{\int}} \dfrac{x^2 dx}{x^4 + 7x^2 + 1}$$ then:
  • v > u
  • 6v = $$\displaystyle \pi $$
  • $$\displaystyle 3u+2v=5\pi /6$$
  • $$\displaystyle u+v=\pi /3$$
 If $$\displaystyle I=\int _{8}^{15} \frac{dx}{(x-3)\sqrt{x+1} }$$ then$$ I$$ equals
  • $$ \displaystyle \frac{1}{2}\log \frac {5}{3} $$
  • $$\displaystyle 2 \log \frac{1}{3}$$
  • $$ \displaystyle \frac{1}{2}-\log \frac {1}{5} $$
  • $$\displaystyle 2 \log \frac{5}{3}$$
37 If $$ n > 1,$$ and $$ \displaystyle I=\int _{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^{2}})^{n}}$$ then $$ I$$  equals
  • $$ \displaystyle \frac{n}{n^{2}-1}$$
  • $$ \displaystyle \frac{2n}{n^{2}-1}$$
  • $$ \displaystyle \frac{n}{2(n^{2}-1)}$$
  • $$ \displaystyle \sqrt{ n^{2}-1}$$
A function $$f $$ is defined by $$\displaystyle f(x)=\frac{1}{2^{r-1}},\frac{1}{2r}<x\leq \frac{1}{2^{r-1}},r=1,2,3,.....$$ then the value of $$ \displaystyle \int _{0}^{1}f(x)dx $$ is equal
  • $$\cfrac 13$$
  • $$\cfrac 14$$
  • $$\cfrac 23$$
  • $$\cfrac 12$$
If $$\displaystyle \int_{0}^{\alpha}\frac{dx}{1-\cos \alpha \cos x}=\frac{A}{\sin \alpha}+B(a\neq 0)$$
Then possible values of $$ A$$ and $$B$$ are
  • $$\displaystyle A=\frac{\pi}{2},B=0$$
  • $$\displaystyle A=\frac{\pi}{4},B=\frac{\pi}{4\sin \alpha} $$
  • $$\displaystyle A=\frac{\pi}{6},B=\frac{\pi}{\sin \alpha} $$
  • $$\displaystyle A=\pi ,B=\frac{\pi}{\sin \alpha} $$
$$\displaystyle \int_{e^{e^{e}}}^{e^{e^{e^{e}}}}\frac{dx}{xlnx\cdot ln\left ( lnx \right )\cdot ln\left ( ln\left ( lnx \right ) \right )}$$ equals
  • 1
  • 1/e
  • e-1
  • 1+e
If $$f\left( x \right) =\int _{ 0 }^{ 1 }{ \left( xf\left( t \right) +1 \right) dt,then\int _{ 0 }^{ 3 }{ f\left( x \right) dx=12 }  } $$ 
because 
Statement-2: f(x) = 3x + 1
  • Statements-1 is true, statements-2 is true and statements-2 is correct explanation for statement-1.
  • Statements-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statements-1.
  • Statements-1 is true, statements-2 is false.
  • Statements-1 is false, statements-2 is true.
Value of $$\displaystyle \int_{0}^{\pi /2}\displaystyle \frac{\sin 4\Theta }{\sin \Theta }\: d\Theta $$ is
  • $$1/3$$
  • $$2/3$$
  • $$1$$
  • $$4/3$$
Evaluate $$\displaystyle \int_{0}^{1}\left ( tx+1-x \right )^{n}dx,$$ where n is a positive integer and t is a parameter independent of x. Hence $$\displaystyle \int_{0}^{1}x^{k}\left ( 1-x \right )^{n-k}dx=\frac{P}{\left [ ^{n}C_{k}\left ( n+1 \right ) \right ]}for\:k=0,1,......n$$, then $$P=$$
  • 2
  • 1
  • 3
  • None of these
For x > 0, let f(x) = $$\displaystyle \int_{1}^{x}{ \frac{log t}{1 + t}} dt $$. Then f(x) + f$$\displaystyle \left( \frac{1}{x} \right)$$ is equal to:
  • $$\displaystyle \frac{1}{4} log x^2$$
  • log x
  • $$\displaystyle \frac{1}{2} (log x)^2$$
  • $$\displaystyle \frac{1}{4} (log x)^2$$
The value of $$\displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 }  } }{ \dfrac { \sin ^{ -1 }{ x }  }{ { \left( 1-{ x }^{ 2 } \right)  }^{ { 3 }/{ 2 } } } dx } $$ is
  • $$\dfrac { \pi }{ 2 } -\log { 2 } $$
  • $$\dfrac { \pi }{ 4 } -\dfrac { 1 }{ 2 } \log { 2 } $$
  • $$\dfrac { \pi }{ 2 } +\dfrac { 1 }{ 2 } \log { 2 } $$
  • $$\pi -\dfrac { 1 }{ 2 } \log { 2 } $$
Evaluate $$\displaystyle \int_{0}^{\pi /4}\frac{\cos x-\sin x}{10+\sin 2x}dx$$
  • $$\displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{2}}{3}+\tan^{-1} \frac{1}{3} \right )$$
  • $$\displaystyle \frac{1}{3}\left (\tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{2}{3} \right )$$
  • $$\displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{2}}{3}-\tan^{-1} \frac{1}{3} \right )$$
  • $$\displaystyle \frac{1}{3}\left ( \tan^{-1} \frac{\sqrt{1}}{3}-\cot^{-1} \frac{1}{3} \right )$$
The value of $$\displaystyle \int_{3}^{4}\sqrt {(4 - x)(x - 3)}dx$$ is
  • $$\dfrac {\pi}{16}$$
  • $$\dfrac {\pi}{8}$$
  • $$\dfrac {\pi}{4}$$
  • $$\dfrac {\pi}{2}$$
The value of the integral $$\displaystyle \int_{\frac {1}{3}}^1\frac {(x-x^3)^{\frac {1}{3}}}{x^4}dx$$
  • $$6$$
  • $$0$$
  • $$3$$
  • $$4$$
If $${ I }_{ m }=\overset { e }{ \underset { 1 }{ \int   }  } (lnx)^{ m }dx,$$ where $$m\epsilon N,$$then $${ I }_{ 10 }+10{ I }_{ 9 }$$ is equal to-
  • $${ e }^{ 10 }$$
  • $$\frac { { e }^{ 10 } }{ 10 } $$
  • e
  • e-1
If I = $$\overset { 2 }{ \underset { -3 }{ \int }  }$$ (|x + 1 | + |x + 2| + |x - 1|)dx, then I equal
  • $$\dfrac{31}{2}$$
  • $$\dfrac{35}{2}$$
  • $$\dfrac{47}{2}$$
  • None of these
$$\displaystyle\int^{\pi /3}_0\frac{\cos \theta}{5-4\sin \theta}d\theta$$ equal to.
  • $$\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5+2\sqrt{3}}\right)$$
  • $$\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5}{5-2\sqrt{3}}\right)$$
  • $$\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5+2\sqrt{3}}{5}\right)$$
  • $$\displaystyle\frac{1}{4}log\left(\displaystyle\frac{5-2\sqrt{3}}{5}\right)$$
The value of $$\int _{ 1/3 }^{ 3 }{ \cfrac { \tan { \left( { x }^{ 2 }+\cfrac { 1 }{ { x }^{ 2 } }  \right)  }  }{ \sin { \left( x+\cfrac { 1 }{ x }  \right)  }  }  } \cfrac { dx }{ x } $$ is 
  • $$0$$
  • $$3/2$$
  • $$1/2$$
  • $$4/3$$
Let $$I_{1} =\displaystyle  \int_{0}^{1}\dfrac {e^{x}dx}{1 + x}$$ and $$I_{2} = \displaystyle \int_{0}^{1} \dfrac {x^{2}dx}{e^{x^{3}}(2 - x^{3})}$$, then $$\dfrac {I_{1}}{I_{2}}$$ is
  • $$3/e$$
  • $$e/3$$
  • $$3e$$
  • $$1/3e$$
The value of $$\int^3_{1/3}\dfrac{tan(x^2-\dfrac{1}{x^2})}{sin(x+\dfrac{1}{x}) }\dfrac{dx}{x}$$ is 
  • 0
  • $$\dfrac{3}{2}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{4}{3}$$
$$\int _{ 0 }^{ \pi /2 }{ \sin ^{ 8 }{ x } \cos ^{ 2 }{ x } dx } $$ is equal to
  • $$\cfrac { \pi }{ 512 } $$
  • $$\cfrac {3 \pi }{ 512 } $$
  • $$\cfrac { 5\pi }{ 512 } $$
  • $$\cfrac {7 \pi }{ 512 } $$
The value of the integral $$\displaystyle \int_0^1 \dfrac{x^{\alpha}-1}{\log x}dx$$ is
  • $$\log (\alpha+1)$$
  • $$2\log (\alpha+1)$$
  • $$3\log \alpha$$
  • none of these
The value of the definite integral $$\displaystyle\int^{\pi/2}_{0}\left(\cos ^{10}x\cdot \sin 12x\right)dx$$, is equal to.
  • $$\displaystyle\frac{1}{10}$$
  • $$\displaystyle\frac{1}{11}$$
  • $$\displaystyle\frac{1}{12}$$
  • $$\displaystyle\frac{1}{22}$$
If $$\displaystyle I=\int _{ { -\pi  }/{ 6 } }^{ { \pi  }/{ 6 } }{ \dfrac { \pi +4{ x }^{ 5 } }{ 1-\sin { \left( \left| x \right| +\dfrac { \pi  }{ 6 }  \right)  }  }  } dx$$, then I equals to
  • $$4\pi$$
  • $$2\pi +\dfrac { 1 }{ \sqrt { 3 } }$$
  • $$2\pi -\dfrac { 1 }{ \sqrt { 3 } }$$
  • $$4\pi +\sqrt { 3 } -\dfrac { 1 }{ \sqrt { 3 } }$$
If, $$\int^{\frac{\pi}{2}} _0 \frac{sin^2x}{(1 + cosx^2)} dx = 0$$
  • $$\frac{4 - \pi}{2}$$
  • $$\frac{\pi - 4}{2}$$
  • $$4 - frac{\pi}{2}$
  • $$\frac{4 + \pi}{2}$$
$${I}_{n}=\int_{1}^{e}{\left(logx\right)^{n}dx}$$ and $${I}_{n}=A+{BI}_{n-1}$$ then
A=........., B=............
  • $$e,-n$$
  • $$1/e,n$$
  • $$-e,n$$
  • $$-e-n$$
$$\displaystyle \int _{ 0 }^{ x }{ \cfrac { \sin { x }  }{ 1+\cos ^{ 2 }{ x }  }  } dx=\pi \cfrac { \cos { \alpha  }  }{ 1-\sin ^{ 2 }{ \alpha  }  } $$
  • for no value of $$\alpha$$
  • for exactly two values of $$\alpha$$ in $$\left( 0,\pi \right) $$
  • for atleast one $$\alpha$$ in $$\left( \pi /2,\pi \right) $$
  • for exactly one $$\alpha$$ in $$\left( 0,\pi /2 \right) $$
What is $$\int _{ 0 }^{ 1 }{ x{ \left( 1-x \right)  }^{ 9 }dx } $$ equal to?
  • $$\dfrac{1}{240}$$
  • $$\dfrac{1}{110}$$
  • $$\dfrac{1}{132}$$
  • $$\dfrac{1}{148}$$
The value of $$\int _{ 0 }^{ 14 }{ \dfrac { \left[ { x }^{ 2 } \right]  }{ \left[ { x }^{ 2 }-28x+196 \right] +\left[ { x }^{ 2 } \right]  }  } $$
where [x] is the integral part of real x, is
  • 14
  • 0
  • 7
  • 49
If $$I_1 =\int^1_0 2x^2 dx, I_2 =\int^1_0 2^{x3} dx, I_3 =\int^2_1 2x^{x2} dx$$ then 
  • $$I_1 > I_2$$
  • $$I_2 > I_1$$
  • $$I_3 > I_4$$
  • $$I_3 = I_4$$
$$\displaystyle E = \int_{R}^{\infty}\dfrac{GMm}{x^2}$$ dx , (where $$G$$ , $$M$$ , $$m$$ are constants ) equal to
  • $$-\dfrac{GMm}{R^2}$$
  • $$+\dfrac{GMm}{R^2}$$
  • $$-\dfrac{GMm}{R}$$
  • $$+\dfrac{GMm}{R}$$
$$\int _{ 0 }^{ 4036 }{ \dfrac { { 2 }^{ x } }{ { 2 }^{ x }+{ 1 }^{ 4036-x } }  } dx=............$$
  • 2018
  • 4035
  • 2017
  • -2015
If $$I_{1} = \int_{0}^{1} 2^{x^{3}} dx, I_{2} = \int_{0}^{1}2^{x^{2}}dx, I_{3} = \int_{1}^{2}2^{x^{2}}dx$$ and $$I_{4} = \int_{1}^{2}2^{x^{3}}dx$$, then
  • $$I_{1} > I_{2}$$
  • $$I_{2} > I_{1}$$
  • $$I_{3} > I_{4}$$
  • $$I_{1} > I_{3}$$
A function $$f(x)$$ which satisfies the relation $$f(x) = e^{x} + \int_{0}^{1} e^{x}f(t)dt$$, then $$f(x)$$ is
  • $$\dfrac {e^{x}}{2 - e}$$
  • $$(e - 2)e^{x}$$
  • $$2e^{x}$$
  • $$\dfrac {e^{x}}{2}$$
Value of the definite integral $$\displaystyle \int _{ 0 }^{ 1 }{ \cot ^{ -1 }{ \left( 1-x+{ x }^{ 2 } \right)  } dx }$$ is:
  • $$\pi -\log { 2 }$$
  • $$\dfrac{\pi}{2} -\log { 2 }$$
  • $$\pi +\log { 2 }$$
  • $$\dfrac{\pi}{2} +\log { 2 }$$
If $$I=\int _{ 0 }^{ \pi  }{ \frac { x\sin { x }  }{ 1+{ cos }^{ 2 }x } dx } $$, then the value of $$\sin { \sqrt { I }  } $$, is
  • $$\frac { 1 }{ 2 } $$
  • $$0$$
  • $$\frac { \sqrt { 2 } }{ 2 } $$
  • $$1$$
$$if\,{l_n} = \int\limits_0^1 {{x^m}} {\left( {\ln x} \right)^n}dx,\,and\,{l_n} = \frac{1}{{m + 1}}{l_{n - 1}}$$ then k is equal to
  • n
  • -n
  • m-1
  • None of these
$$For x>0$$,let  $$f\left( x \right) =\int _{ 1 }^{ 2 }{ \dfrac { \log { t }  }{ 1+t }  } dt$$,then$$f\left( x \right) +f\left( \dfrac { 1 }{ x }  \right)$$is equal to:
  • $$\dfrac { 1 }{ 4 } \left( \log { x } \right) ^{ 2 }$$
  • $$\dfrac { 1 }{ 2 } \left( \log { x } \right) ^{ 2 }$$
  • $$\log { x }$$
  • $$\dfrac { 1 }{ 4 } \log { { x }^{ 2 } }$$
Evaluate the integral, $$\int _{ 0 }^{ 1 }{ \cos { \left( 2\cot ^{ -1 }{ \sqrt { \dfrac { 1-x }{ 1+x }  }  }  \right)  }  } dx=$$
  • $$-1/2$$
  • $$1/2$$
  • $$0$$
  • $$1$$
$$\int _{ \pi /4 }^{ \pi /2 }{ \cos { \theta  } \csc ^{ 2 }{ \theta  } d\theta = }$$
  • $$\sqrt {2}-1$$
  • $$1-\sqrt {2}$$
  • $$\sqrt {2}+1$$
  • $$None\ of\ these$$
$$\displaystyle \int_2^ 3\frac{(x+2)^2}{2x^2- 10x +53}dx$$ is equal to
  • $$2$$
  • $$1$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{5}{2}$$
Solve $$\displaystyle \int _{ 0 }^{ 1/2 }{ \dfrac { x\sin ^{ -1 }{ x }  }{ \sqrt { 1-{ x }^{ 2 } }  } dx= }$$
  • $$\dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 } \pi }{ 12 }$$
  • $$\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 } \pi }{ 12 }$$
  • $$\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 2 } \pi }{ 12 }$$
  • $$None\ of\ these$$
For n >2,        $$\displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { \sec ^{ 2 }{ x } dx }{ { \left( \sec { x } +\tan { x }  \right)  }^{ n } }  } = ?$$
  • $$\dfrac { 1 }{ { n }^{ 2 }-1 } $$
  • $$\dfrac { n }{ { n }^{ 2 }-1 } $$
  • $$\dfrac { n }{ { n }^{ 2 }+1 } $$
  • $$\dfrac { 2 }{ { n }^{ 2 }-1 } $$
Let $$I=\displaystyle\int _{ 0 }^{ 1 }{ \sqrt { \dfrac { 1+\sqrt { x }  }{ 1-\sqrt { x }  }  } dx } $$ and $$J=\displaystyle\int _{ 0 }^{ 1 }{ \sqrt { \dfrac { 1-\sqrt { x }  }{ 1+\sqrt { x }  }  } dx }$$, then the correct statement is
  • $$I+J=4$$
  • $$I-J=\pi$$
  • $$I=\dfrac{2+\pi}{2}$$
  • $$J=\dfrac{4-\pi}{2}$$
$$\int _{ -\pi /4 }^{ \pi /4 }{ ln\sqrt { 1+\sin { 2x }  } dx }$$ has the value equal to:
  • $$-\dfrac {\pi}{4}l\ n2$$
  • $$-\dfrac {\pi}{2}l\ n2$$
  • $$-\dfrac {\pi}{8}l\ n2$$
  • $$-\dfrac {\pi}{16}l\ n2$$
$$\int _{ -1 }^{ 1 }{ x } \tan { ^{ -1 } } xdx$$
  • $$\left( \frac { \pi }{ 2 } -1 \right)$$
  • $$\left( \frac { \pi }{ 2 } +1 \right)$$
  • $$(\pi-1)$$
  • $$None$$
$$\int _{ 0 }^{ 2\pi  }{ \sqrt { 1+\sin { \dfrac { x }{ 2 }  }  } dx } =$$
  • $$0$$
  • $$2$$
  • $$8$$
  • $$4$$
$$\displaystyle\int^{1}_0\sqrt{x(1-x)}dx=$$.
  • $$\dfrac{\pi}{8}$$
  • $$\dfrac{3\pi}{8}$$
  • $$\dfrac{5\pi}{4}$$
  • $$\dfrac{\pi}{2}$$
If $${ I }_{ 1 }=\int _{ x }^{ 1 }{ \cfrac { 1 }{ 1+{ t }^{ 2 } }  } dt$$ and $${ I }_{ 2 }=\int _{ 1 }^{ 1/x }{ \cfrac { 1 }{ 1+{ t }^{ 2 } }  } dt$$ for x > 0, then 
  • $${ I }_{ 1 }={ I }_{ 2 }$$
  • $${ I }_{ 1 }>{ I }_{ 2 }$$
  • $${ I }_{ 2 }>{ I }_{ 1 }$$
  • None of these.
$$\displaystyle \overset{\pi/2}{\underset{0}{\int}} \dfrac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$ equals-
  • $$\pi/ab$$
  • $$2\pi/ab$$
  • $$ab/ \pi$$
  • $$\pi/2ab$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers