Explanation
Let,
I=π/3∫π/6dx1+√tanx
I=π/3∫π/6dx1+√sinxcosx
I=π/3∫π/6√cosx√cosx+√sinxdx …… (1)
We know that,
b∫af(x)dx=b∫af(a+b−x)dx
Therefore,
I=π/3∫π/6√cos(π6+π3−x)√cos(π6+π3−x)+√sin(π6+π3−x)dx
I=π/3∫π/6√cos(π2−x)√cos(π2−x)+√sin(π2−x)dx
I=π/3∫π/6√sinx√sinx+√cosxdx …… (2)
Add equations (1) and (2).
2I=π/3∫π/6√sinx+√cosx√sinx+√cosxdx
2I=π/3∫π/61⋅dx
2I=[x]π/3π/6
2I=π3−π6
2I=π6
I=π12
Hence, this is the required value of the integral.
∫x1dt|t|√|t|2−1=π6put|t|=secθ⇒dtsecθtanθdθchanginglimit,t=x⇒secθ=x⇒sec−1xt=1⇒secθ=1⇒sec−11∫sec−1xsec−11secθtanθdθsecθ√sec2θ−1=π6(∵sec2θ−1=tan2θ)⇒∫sec−1xsec−11secθtanθdθsecθtanθ=π6⇒∫sec−1xsec−11dθ=π6⇒sec−1xsec−11[θ]=π6∴sec−1x−sec−11=π6∴sec−1x=π6+sec−11=π6+0∴x=secπ6=2√3
Please disable the adBlock and continue. Thank you.