Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 12 - MCQExams.com

If f(x)=|cosx1012cosx1012cosx| then π/20f(x)dx is equal to 
  • 1/4
  • 1/3
  • 1/2
  • noneofthese
The value of [x]0(x[x])dx, where [x] is the greatest integer |lex is equal to
  • 4[x]
  • 2[x]
  • 12[x]
  • 15[x]
The value of 11dx(2x)1x2 is 
  • 0
  • π3
  • 2π33
  • cannot be evaluated
The value of 0x2+1(x+x2+1)n+1.dx  n  N{±1} is
  • 0
  • n(n21)
  • n(n21)
  • n2
3π3πsin2θsin22θdθ is equal to-
  • π
  • 3π2
  • 5π2
  • 6π
Let f(x)+f(1x)=F(x) where f(x)=x1lnt1+tdx.Then F(e)=
  • 12
  • 12
  • 1
  • 1
Evaluate:
32|1x2|dx
  • 283
  • 23
  • 83
  • 53
π/20(sinxcosx).log(sinx+cosx)dx=
  • π4
  • π2
  • 0
  • 2
2π0xlog(3+cosx3cosx)dx
  • π2log3
  • π12log3
  • π3log3
  • 0
20(4xxx4x)dx is equal to
  • 0
  • 8
  • 4
  • 16
If 210tan1xdx=10cot1(1x+x2)dx, then 10tan1(1x+x2)dx is equal to: 
  • log4
  • π2+log2
  • log2
  • π2log4
The value of 10dxx+1x2 is
  • π3
  • π2
  • 12
  • π4
Let f:(2,3)(0,1) be defined by f(x)=x[x] then f1(x) equals
  • 2x+1
  • x+1
  • x1
  • x+2
If I=158dx(x3)x+1, then I equals 

  • 12log53
  • 2log13
  • 12log15
  • 2log53
8210xx+10xdx is
  • 1
  • 2
  • 3
  • 4
π01x1+xdx=
  • π2
  • π21
  • π2+1
  • π+1
1(ex+1+e3x)1dx is equal to: 
  • π4e2
  • π4e
  • 1e2(π2tan11e)
  • π2e2
120xsin1x1x2dx is equal to
  • 12+π23
  • 12π23
  • 12+π43
  • 12π43
The integral π4π128cos2x(tanx+cotx)3dx equals :
  • 15128
  • 1564
  • 1332
  • 13256
If P=limn(nr=1(n3+r3))1/nn3  and λ=10dx1+x3 then InP is equal to
  • In21+λ
  • In23+3λ
  • 2In2λ
  • In43+3λ
30dx5x2
  • π6
  • π2
  • π2
  • π6
0dx(x+x2+1)3=
  • 38
  • 18
  • 38
  • None of these
If I1=π/20cos(sinx)dx,I2=π/20sin(cosx)dx and I3=π/20cosxdx, then
  • I1>I2>I3
  • I3>I2>I1
  • I3>I1>I2
  • I1>I3>I2
If I =23(|x+1|+|x+2|+|x1|)dx, then i equals 
  • 312
  • 352
  • 472
  • 392
If f(x)x1tan1ttdt(x>0), then the value of f(o2)f(1o2)
  • π
  • 2π
  • π2
  • 0
The floor value of integral 3ππ4x1+4xdx is 
  • 1
  • 2
  • 3
  • 4
Let I1=22x6+3x5+7x4x4+2dx andI2=132(x+1)2+11(x+1)+14(x+1)4+2dx, then the value ofI1+I2 is
  • 8
  • 200/3
  • 100/3
  • None of these
If I_1=\displaystyle\int^1_x\dfrac{dt}{1+t^2} and I_2=\displaystyle\int^{1/x}_1\dfrac{dt}{1+t^2} for x > 0, then?
  • I_1 = I_2
  • I_1 > I_2
  • I_2 > I_1
  • I_2=\cot^{-1}x-\pi/4
If z=x+3i then value of \displaystyle\int^4_2\left[arg\left|\dfrac{z-i}{z+i}\right|\right]dx, where [.] denotes the greatest integer function, is?
  • 3\sqrt{2}
  • 6\sqrt{3}
  • \sqrt{6}
  • None
Suppose I_1=\displaystyle \int_{0}^{\pi/2} \cos(\pi \sin^2 x)dx;I_2=\displaystyle \int_{0}^{\pi/2} \cos(2\pi \sin^2x)dx and I_3=\displaystyle \int_{0}^{\pi/2} \cos(\pi \sin x)dx then
  • I_1=0
  • I_2+I_3=0
  • I_1+I_2+I_3=0
  • I_2=I_3
If m,n \in N, then the value of \displaystyle \int_{a}^{b}(x-a)^m (b-x)^n dxis equal to 
  • \dfrac{(b-a)^{m+n}.m!n!}{(m+n)!}
  • \dfrac{(b-a)^{m+n+1}.m!n!}{(m+n+1)!}
  • \dfrac{(b-a)^{m}.m!}{m!}
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers