Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 12 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Definite Integrals
Quiz 12
If
f
(
x
)
=
|
cos
x
1
0
1
2
cos
x
1
0
1
2
cos
x
|
then
∫
π
/
2
0
f
(
x
)
d
x
is equal to
Report Question
0%
1
/
4
0%
−
1
/
3
0%
1
/
2
0%
n
o
n
e
o
f
t
h
e
s
e
The value of
∫
[
x
]
0
(
x
−
[
x
]
)
d
x
, where
[
x
]
is the greatest integer
|
l
e
x
is equal to
Report Question
0%
4
[
x
]
0%
2
[
x
]
0%
1
2
[
x
]
0%
1
5
[
x
]
The value of
∫
−
1
1
d
x
(
2
−
x
)
√
1
−
x
2
is
Report Question
0%
0
0%
π
√
3
0%
2
π
3
√
3
0%
cannot be evaluated
The value of
∫
∞
0
√
x
2
+
1
(
x
+
√
x
2
+
1
)
n
+
1
.
d
x
∀
n
∈
N
−
{
±
1
}
is
Report Question
0%
0
0%
n
(
n
2
−
1
)
0%
n
(
n
2
−
1
)
0%
n
2
∫
3
π
−
3
π
sin
2
θ
sin
2
2
θ
d
θ
is equal to-
Report Question
0%
π
0%
3
π
2
0%
5
π
2
0%
6
π
Let
f
(
x
)
+
f
(
1
x
)
=
F
(
x
)
where
f
(
x
)
=
∫
x
1
ln
t
1
+
t
d
x
.Then
F
(
e
)
=
Report Question
0%
−
1
2
0%
1
2
0%
1
0%
−
1
Evaluate:
∫
3
−
2
|
1
−
x
2
|
d
x
Report Question
0%
28
3
0%
2
3
0%
8
3
0%
5
3
∫
π
/
2
0
(
sin
x
−
cos
x
)
.
log
(
sin
x
+
cos
x
)
d
x
=
Report Question
0%
π
4
0%
π
2
0%
0
0%
2
2
π
∫
0
x
l
o
g
(
3
+
cos
x
3
−
cos
x
)
d
x
Report Question
0%
π
2
l
o
g
3
0%
π
12
l
o
g
3
0%
π
3
l
o
g
3
0%
0
∫
2
0
(
√
4
−
x
x
−
√
x
4
−
x
)
d
x
is equal to
Report Question
0%
0
0%
8
0%
4
0%
16
If
2
∫
1
0
tan
−
1
x
d
x
=
∫
1
0
cot
−
1
(
1
−
x
+
x
2
)
d
x
, then
∫
1
0
tan
−
1
(
1
−
x
+
x
2
)
d
x
is equal to:
Report Question
0%
log
4
0%
π
2
+
log
2
0%
log
2
0%
π
2
−
log
4
The value of
∫
1
0
d
x
x
+
√
1
−
x
2
is
Report Question
0%
π
3
0%
π
2
0%
1
2
0%
π
4
Let
f
:
(
2
,
3
)
→
(
0
,
1
)
be defined by
f
(
x
)
=
x
−
[
x
]
then
f
−
1
(
x
)
equals
Report Question
0%
2
x
+
1
0%
x
+
1
0%
x
−
1
0%
x
+
2
If
I
=
∫
15
8
d
x
(
x
−
3
)
√
x
+
1
, then
I
equals
Report Question
0%
1
2
log
5
3
0%
2
log
1
3
0%
1
2
log
1
5
0%
2
log
5
3
∫
8
2
√
10
−
x
√
x
+
√
10
−
x
d
x
is
Report Question
0%
1
0%
2
0%
3
0%
4
∫
π
0
√
1
−
x
1
+
x
d
x
=
Report Question
0%
π
2
0%
π
2
−
1
0%
π
2
+
1
0%
π
+
1
∫
∞
1
(
e
x
+
1
+
e
3
−
x
)
−
1
d
x
is equal to:
Report Question
0%
π
4
e
2
0%
π
4
e
0%
1
e
2
(
π
2
−
t
a
n
−
1
1
e
)
0%
π
2
e
2
∫
1
2
0
x
s
i
n
−
1
x
√
1
−
x
2
d
x
is equal to
Report Question
0%
1
2
+
π
2
√
3
0%
1
2
−
π
2
√
3
0%
1
2
+
π
4
√
3
0%
1
2
−
π
4
√
3
The integral
∫
π
4
π
12
8
cos
2
x
(
tan
x
+
cot
x
)
3
d
x
equals :
Report Question
0%
15
128
0%
15
64
0%
13
32
0%
13
256
If
P
=
lim
n
→
∞
(
∏
n
r
=
1
(
n
3
+
r
3
)
)
1
/
n
n
3
and
λ
=
∫
1
0
d
x
1
+
x
3
then
I
n
P
is equal to
Report Question
0%
I
n
2
−
1
+
λ
0%
I
n
2
−
3
+
3
λ
0%
2
I
n
2
−
λ
0%
I
n
4
−
3
+
3
λ
3
∫
0
d
x
√
5
−
x
2
Report Question
0%
π
6
0%
π
2
0%
−
π
2
0%
−
π
6
∫
∞
0
d
x
(
x
+
√
x
2
+
1
)
3
=
Report Question
0%
3
8
0%
1
8
0%
−
3
8
0%
N
o
n
e
o
f
t
h
e
s
e
If
I
1
=
∫
π
/
2
0
cos
(
sin
x
)
d
x
,
I
2
=
∫
π
/
2
0
sin
(
cos
x
)
d
x
and
I
3
=
∫
π
/
2
0
cos
x
d
x
, then
Report Question
0%
I
1
>
I
2
>
I
3
0%
I
3
>
I
2
>
I
1
0%
I
3
>
I
1
>
I
2
0%
I
1
>
I
3
>
I
2
If I =
2
∫
−
3
(
|
x
+
1
|
+
|
x
+
2
|
+
|
x
−
1
|
)
d
x
, then i equals
Report Question
0%
31
2
0%
35
2
0%
47
2
0%
39
2
If
f
(
x
)
∫
x
1
t
a
n
1
t
t
d
t
(
x
>
0
)
, then the value of
f
(
o
2
)
−
f
(
1
o
2
)
Report Question
0%
π
0%
2
π
0%
π
2
0%
0
The floor value of integral
∫
3
π
π
4
x
1
+
4
x
d
x
is
Report Question
0%
1
0%
2
0%
3
0%
4
Let
I
1
=
∫
2
−
2
x
6
+
3
x
5
+
7
x
4
x
4
+
2
d
x
and
I
2
=
∫
1
−
3
2
(
x
+
1
)
2
+
11
(
x
+
1
)
+
14
(
x
+
1
)
4
+
2
d
x
,
then the value of
I
1
+
I
2
is
Report Question
0%
8
0%
200
/
3
0%
100
/
3
0%
None of these
Explanation
In
I
2
,
put
x
+
1
=
t
,
then
I
2
=
∫
2
−
2
2
t
2
+
11
t
+
14
t
4
+
2
d
t
=
∫
2
−
2
2
x
2
+
11
x
+
14
x
4
+
2
d
x
∴
I
1
+
I
2
=
=
∫
2
−
2
(
x
2
+
3
x
+
7
)
(
x
4
+
2
)
+
5
x
x
4
+
2
d
x
=
∫
2
−
2
(
x
2
+
3
x
+
7
)
d
x
+
5
∫
2
−
2
x
x
4
+
2
d
x
=
2
∫
2
0
(
x
2
+
7
)
d
x
=
100
3
(The other integrals are zero, being integrals of odd functions.)
If
I
1
=
∫
1
x
d
t
1
+
t
2
and
I
2
=
∫
1
/
x
1
d
t
1
+
t
2
for
x
>
0
, then?
Report Question
0%
I
1
=
I
2
0%
I
1
>
I
2
0%
I
2
>
I
1
0%
I
2
=
cot
−
1
x
−
π
/
4
If
z
=
x
+
3
i
then value of
∫
4
2
[
a
r
g
|
z
−
i
z
+
i
|
]
d
x
, where
[
.
]
denotes the greatest integer function, is?
Report Question
0%
3
√
2
0%
6
√
3
0%
√
6
0%
None
Suppose
I
1
=
∫
π
/
2
0
cos
(
π
sin
2
x
)
d
x
;
I
2
=
∫
π
/
2
0
cos
(
2
π
sin
2
x
)
d
x
and
I
3
=
∫
π
/
2
0
cos
(
π
sin
x
)
d
x
then
Report Question
0%
I
1
=
0
0%
I
2
+
I
3
=
0
0%
I
1
+
I
2
+
I
3
=
0
0%
I
2
=
I
3
Explanation
We have
I
1
=
∫
π
/
2
0
c
o
s
(
π
s
i
n
2
x
)
d
x
using
∫
b
a
f
(
x
)
d
x
=
∫
b
a
f
(
a
+
b
−
x
)
d
x
I
1
=
∫
π
/
2
0
c
o
s
(
π
sin
2
(
π
2
−
x
)
)
d
x
I
1
=
∫
π
/
2
0
c
o
s
(
π
c
o
s
2
x
)
d
x
On adding,
2
I
1
=
∫
π
/
2
0
c
o
s
(
π
s
i
n
2
x
)
+
c
o
s
(
π
c
o
s
2
x
)
d
x
=
∫
π
/
2
0
2
c
o
s
(
π
2
)
.
c
o
s
(
π
2
c
o
s
2
x
)
d
x
⇒
I
1
=
0
Now,
I
2
=
∫
π
/
2
0
cos
(
2
π
sin
2
x
)
d
x
I
2
=
∫
π
/
2
0
c
o
s
{
π
(
1
−
cos
2
x
)
}
d
x
=
−
∫
π
/
2
0
cos
(
π
cos
2
x
)
d
x
=
−
1
2
∫
π
/
4
0
c
o
s
(
π
c
o
s
t
)
d
t
(
p
u
t
2
x
=
t
)
=
−
2
2
∫
π
/
2
0
c
o
s
(
π
c
o
s
t
)
d
t
=
−
I
3
⇒
I
2
+
I
3
=
0
I
3
=
−
∫
π
/
2
0
c
o
s
(
π
s
i
n
t
)
d
t
∴
I
2
+
I
3
=
0
Hence,
I
1
+
I
2
+
I
3
=
0
If m,n
∈
N, then the value of
∫
b
a
(
x
−
a
)
m
(
b
−
x
)
n
d
x
is equal to
Report Question
0%
(
b
−
a
)
m
+
n
.
m
!
n
!
(
m
+
n
)
!
0%
(
b
−
a
)
m
+
n
+
1
.
m
!
n
!
(
m
+
n
+
1
)
!
0%
(
b
−
a
)
m
.
m
!
m
!
0%
None of these
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
0
Answered
1
Not Answered
30
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page