Explanation
∫10xa+x2dx
∫x1+x2dx=12∫dx21+x2=12log(1+x2)+c
=∫10x1+x2dx=[12log(1+x2)+c]10
=(12log(2)+c)−(12log(1)+c)
=12log2
∫10x1+x2dx=12log2
Let I=∫10x31+x8dx
Now, ∫x31+x8dx=14∫d(x4)1+x8=14tan−1(x4)+c
I=∫10x31+x8dx=(14tan−1(x4)+c)10
=[14tan−1(1)+c]−[14tan−1(0)+c]
=14tan−1(1)
=14⋅π4=π16
Hence, ∫10x31+x8dx=π16
∫10(tan−1x)31+x2dx
∫(tan−1x)31+x2dx=∫(tan−1x)3d(tan−1x)
=(tan−1x)44+c
∫10(tan−1x)31+x2⋅dx=((tan−1x)44+c)10
=[(tan−11)44+c]−[(tan−10)44+1]
=[(π4)44+c]−[0+c]
=π445=π41024
Consider, I=∫π40etanxcos2xdx
∫etanx⋅sec2xdx=∫etanx⋅d(tanx)
=∫etanxd(tanx)=etanx+c
∴∫π40etanxcos2xdx=(etanx+c)π40
=(etanπ4+c)−(etan0+c)
=(e+c)−(1+c)
=e−1
Hence, ∫π40etanxcos2xdx=e−1
∫10tanhxdx ∫tanhxdx=∫ex−e−xex+e−xdx=log(ex+e−x)+c ∫10tanhxdx=log(ex+e−x)+c∫10 =(log(e+1e)+c)−(log(2)+c) =log(e+1e)−log2 =log(e2+12e) ∫10tanhxdx=log(e2+12e)
∫π0tanxsecx+cosxdx
∫tanxsecx+cosxdx=∫d(secx)1+sec2x
=tan−1(secx)+c
∫π0tanxsecx+cosxdx=[tan(secx)+c]|π0
=(tan−1(secπ)+c)−[tan−1(sec0)]
=−π2
∫10xdx(x2+1)2 ∫xdx(x2+1)2=12∫dx2(1+x2)2=−12(11+x2)−1 =−12(1+x2)+c =∫10xdx(x2+1)2=[−12(1+x2)+c]∫10 =[−12(2)+c]−[−12+c] =−14+12=14 ∫10xdx(x2+1)2=14
∫π20dx4cos2x+9sec2x ∫dx4cos2x+9sec2x=∫sec2xdx4+9tan2x=∫d(tanx)4+9tan2x =14tan−1(32tanx)23+c =16tan−1(32tanx)+c ∫π20dx4cos2x+9sec2x=[16tan−1(32tanx)+c]∫π20 =(16tan−1(32tanπ2)+c]−(16tan−1(0)+c) =16×π2=π12
⇒ I=23∫13011−u2du=23[12log1+u1−u]130
To find : ∫a0x−ax+a⋅dx Consider, ∫x−ax+a⋅dx=∫1−2a∫1(x+a)dx =x−2alog(x+a)+c Then, ∫a0x−ax+a⋅dx=[x−2alog(x+a)+c]a0 =(a−2alog(1a)+c)−[0−2alog(a)+c] =a−2alog2 ∫a0x−ax+a⋅dx=a−2alog2
∫10(1−x1+x)dx
∫1−x1+xdx=∫21+xdx−∫1⋅dx
=2log(1+x)−x+c
∫1−x1+xdx=2log(1+x)−x+c
∫101−x1+xdx=(2log(1+x)−x+c)10
=2log(2)−1
=log4−log e
=log(4e)
∫21dx√1+x2=log|x+√x2+a|+c ∫21dx√1+x2=log|x+√x2+1|+c =log|2+√5|−log|1+√2| =log|2+√51+√2| ∫21dx√1+x2=log|2+√51+√2|
=∫1−1dx1+x2 ∫dx1+x2=tan−1x+c ∫1−1dx1+x2=(tan−1x+c)∫1−1 =tan−11−tan−1(−1) =π4−(−π4) =π2 So, ∫1−1dx1+x2=π2
∫0ax5dx√a2−x2x=asinθ ∫aoa5sin5θacosθacosθdθ ∫π20a5sin5θdθ=a5∫π20sin5θdθ =a5(45)(23) =8a515
∫21√−x2+3x−2dx
=∫21√−x2+3x−94+94−2dx
=∫21√−(x−32)2+(12)2dx=∫21√(12)2−(x−32)2dx
=(x2√(x−1)(2−x)+(12)22sin−1(x−3212)+c)21
=(x2√(x−1)(2−x)+18sin−1(2x−3)+c)21
=18sin−1(1)−18sin−1(−1)
=18(π2+π8)
=π8
∫∞1[11+x2]dx tan−1x∫∞1 π2−π4=π4
∫π40sec2x√tanxtanxdx dividing and multiplying by sec2x =∫π40dtanx√tanx =(2√tanx+c)∫π40 =2
∫π20sin4xcos2xdx ∫π20sinmxcosxdx Im,n=(m−1m+n)(m−3m+n−2)(m−5m+n−4).....I0,norI1,,,,, I4,2=(4−16)(4−34)I0,2 ∫π20cos2xdx=12×π2 36(14)×π4=π32
∫31dx√(x−1)(3−x) ∫31dx√−3+4x−x2=∫31dx√1−(x−2)2 =∫31dx√1−(x−2)2=[sin−1(x−21)+c]31 =sin−1(x−2)31 =sin−1(1)−sin−1(−1) =π2−(−π2) =π
∫∞0dx(x+√x2+1)5=∫∞0(x−√x2+1)5−1dx =∫∞0(√x2+1−1)5dx x=Sinhθ ∫∞0(coshθ−sinhθ)5coshθdθ ∫∞0(e−x)5(ex+e−x2)dθ ∫+∞0e−4x+e−6x2dx=12[(−14)[0−1]+(−16)[0−1]] =12(14+16)=12(1+424) =524
∫3π4πsin2xcos4x+sin4xdx=∫3π4πdsin2x(1−sin2x)2+sin4x
=∫3π4πdsin2x(2sin2x−2sin2x+12+12)
sin2x=t∫120dt(√2t−1√2)2+(1√2)2=1√21(1√2)tan−1[(√2t−1√2)1√2]120
=tan−1(2t−1)1/20
=tan−1(0)−tan−1(−1)
=0−(−π4)
=π4
∫10cos−1(1−x21+x2)
x=tanθ
dx=sec2θ⋅dθ
∫π40cos−1(cos2θ)cos2θdθ
∫π402θsec2θdθ=2∫π40θsec2θdθ
2[θtanθ+log|cosθ|]π40
2[(π4−0)+log(1√2)]
π2−2log(√2)=π2−22log(2)
=π2−log2
∫113(x–x3)13x4dx=∫113(x3)13(1x2–1)13x4dx
=∫113(1x2–1)13x3dx (let 1x2–1=t)
=∫08t13−2dt ∴−2x3dx=dt
∫21dx(x−1)2+(√3)2=[1√3tan−1(x−1√3)+c]∫21 =1√3tan−1(1√3) =1√3⋅π6 =π6√3
∫∞0(axcx−bxcx)dx =∫∞0(ac)xdx−∫∞0(bc)xdx =(ac)xlog(ac)∫∞0−(bc)xlog(bc)∫∞0 =[1−1log(ac)]−[1−1log(bc)] =1log(bc)−1log(ac)
∫10ex(1(x=+1)−1(x+1)2)dx
It is in the form of
∫ex[f(x)+f1(x)]dx=exf(x)+c
=[ex(1+x)+c]10
=e2−1
∫x√2dxx√x2−1=π2 =(sin−1x+c)∫x√2=π2 (sec−1x−sec−1√2)=π2 sec−1x−π4=π12 sec−1x=π12+3π12 sec−1=π3 x=secπ3 =2
∫10dxx2+xcosα+1 ∫10dx(x+cosα)2+sin2α (1sinα[tan−1(x+cosαsinα)]+c)10 =1sinα[tan−1(1+cosαsinα)]−1sinαtan−1(cosαsinα) =1sinα[tan−1(cotα2)−tan−1(cotα)] =\dfrac{1}{sin \alpha} \left ( \alpha -\dfrac{\alpha}{2} \right ) =\dfrac{\alpha}{2} sin \alpha
\int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4 sin^2 x}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4 cos^2 x}dx \int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4 cos^2x}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{sec^2x}{(sec^2x + 4)}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{d(tan x)}{5 + tan^2 x} dx= \left [ \dfrac{1}{\sqrt{5}} tan^{-1}\left ( \dfrac{tan x}{\sqrt{5}} \right ) + c \right ]_{0}^{\dfrac{\pi}{2}} =\dfrac{1}{\sqrt{5}}(\dfrac{\pi}{2}) =\dfrac{\pi}{2\sqrt{5}}
\int_{0}^{16}\dfrac{dx}{\sqrt{x+9}-\sqrt{x}} \int_{0}^{16}\dfrac{\sqrt{x}+9+\sqrt{x}}{9}dx =\dfrac{1}{19}\left [ \int_{0}^{16} \sqrt{x+9}dx + \int_{0}^{16}\sqrt{x}dx \right ] =\dfrac{1}{19}\times \dfrac{2}{3}\left [ (x+a)^{\dfrac{3}{2}}\int_{0}^{16}+ x^{\dfrac{3}{2}} \int_{0}^{16} \right ] =\dfrac{2}{27}\left [ (25)^{\dfrac{3}{2}} - (9)^{\dfrac{3}{2}}+ (16)^{\dfrac{3}{2}} \right ] =\dfrac{2}{27}\left [ 125-27+64 \right ] =\dfrac{2}{27}\left [ 189-27 \right ] =\dfrac{2}{27}\left [ 162 \right ] =12
Please disable the adBlock and continue. Thank you.