Processing math: 93%

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 2 - MCQExams.com

1012+3xdx=
  • 23(52)
  • 23(5+2)
  • 35(52)
  • 23(32)
Evaluate the integral
10x1+x2dx
  • log2
  • 12log2 
  • 2
  • log4

The integral 10x31+x8dx=
  • π16
  • π4
  • π2
  • π8

1011+xdx=
  • log2
  • 12log2
  • 2
  • log3
The integral 10(tan1x)31+x2dx=
  • π464
  • π4256
  • π41024
  • π4512

The integral π/40etanxcos2xdx=
  • e1
  • e11
  • e1+1
  • e21

1/20ex[sin1x+11x2] dx =


  • e44
  • πe6
  • πe4
  • πe2
If  k0cosx1+sin2xdx=π4 then k=?
  • π/6
  • 1
  • π/4
  • π/2

10tanhxdx=
  • log(e+1/e)
  • log (e1/e)
  • log(e/2+1/2e)
  • log(e21e)
Evaluate the integral
e1(lnx)3xdx
  • e4/4
  • 14
  • 14(e41)
  • e41

π0tanxsecx+cosxdx=
  • π
  • π2
  • π
  • 2π

0(axbx)dx=(a>1,b>1)
  • 1loga1logb
  • logalogb
  • loga+logb
  • 1loga+1logb
Evaluate: 158x1+x2.dx
  • 158
  • 373
  • 376
  • 379

10ex(ex+1)3dx=
  • e444
  • (e+1)444
  • (e+1)4+164
  • (e+1)44+4

10xdx(x2+1)2=
  • 1/2
  • 1/3
  • 1/4
  • 0
Evaluate: π20esin2xsin2xdx
  • e
  • e+1
  • e1
  • 2e+1

4016x2dX=
  • π4
  • π
  • 16π
  • 4π

Find π20sec2xdx(secx+tanx)n, where (n>2)
  • 1n21
  • nn21
  • nn2+1
  • 2n21
π/20dX4cos2x+9sin2x=
  • π12
  • π4
  • π9
  • π6
Evaluate the following definite integral:
π/2014+5cosxdx=
  • 15log2
  • 12log2
  • 13log3
  • 13log2

a0xax+adx=
  • a+2alog2
  • a2alog2
  • 2aloga
  • 2alog2

If 600dx2x+1=loga, then a=
  • 3
  • 11
  • 81
  • 40
Evaluate the integral
101x1+xdx
  • log4
  • log(4e)
  • 1
  • log(e4)

21dx1+x2=
  • loge(2+52+1)
  • loge(2+12+5)
  • loge(2521)
  • 0
11dx1+x2=
  • 0
  • π2
  • π4
  • π6

a0x5dxa2x2=
  • a515
  • 8a515
  • 8a15
  • 11a215
Evaluate the integral
21(x1)(2x)dx
  • π8
  • π4
  • 18
  • 14
Evaluate: π/80cos34x dx
  • 1/6
  • 1/5
  • 1/3
  • 1/8

1(11+x2)dx=

  • π4
  • π4
  • π2
  • π2

π/40tanxsinxcosxdx=
  • 1
  • 2
  • 0
  • 4
Evaluate: π/20sin3x.cos3xdx
  • 112
  • π24
  • π12
  • 124
π/20sin4x.cos2xdX=
  • π32
  • π216
  • π15
  • π64
Evaluate the integral
31dX(x1)(3x)
  • π
  • π
  • π/2
  • 0

0dx(x+x2+1)5=
  • 1/24
  • 1/5
  • 5/24
  • 5/36
10x(1x)dx=
  • π/2
  • π/4
  • π/6
  • π/8
Evaluate the integral
5π/4πsin2xcos4x+sin4xdx
  • 5π4
  • π2
  • π
  • π4
Evaluate the integral
10cos1(1x21+x2)dx
  • π2log2
  • π2+log2
  • π4 - log 2
  • π4 - log 3
Evaluate: 11/3(xx3)1/3x4dx.
  • 3
  • 0
  • 6
  • 4

tlog2dXex1=π6, then t=
  • log8
  • 4
  • log 4
  • log 2
Evaluate: 10cos (2cot11x1+x)dx
  • 12
  • 12
  • 0
  • 1

21dxx22x+4=
  • 0
  • π2
  • π3
  • π63
Evaluate the integral
I=120sin1x(1x2)32dx
  • π4+12 log 2
  • π412 log 2
  • π3
  • π6

lf 0<a<c, 0<b<c then 0axbxcxdx=
  • logbclogac
  • logalogblogc
  • 1logb/c1loga/c
  • logaclogbc

10xex(x+1)2dx=
  • e2
  • e12
  • e21
  • e32

The solution of the equation x2dxxx21=π12 is
  • 1
  • 1/2
  • 2
  • -2
Evaluate the integral
10dxx2+2xcosα+1
  • sinα
  • tan1 (sinα)
  • α(2sinα)
  • α (sinα)

\displaystyle \int_{0}^{\pi/2}\frac{1}{1+4\sin^{2}x}dx=
  • \displaystyle \frac{\pi}{\sqrt{5}}
  • \displaystyle \frac{\pi}{2\sqrt{5}}
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{3\sqrt{5}}

\displaystyle \int_{0}^{16}\frac{dx}{\sqrt{x+9}-\sqrt{x}}=
  • 10
  • 12
  • 14
  • 16

\displaystyle \int_{0}^{3}x\sqrt{1+x}dx=
  • 9/2
  • 27/4
  • 116/15
  • 112/15

\displaystyle \int_{0}^{1}\frac{\sqrt{x}}{1+x}dx_{=}
  • 2-\pi/2
  • 1-\pi/2
  • \pi/2
  • 2+\pi/2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers