Explanation
x=t2 dx=2tdt =∫10(t21+t)2t⋅dt =2∫10t31+tdt=2∫10t3+1t+1dt−2∫101t+1dt =2[t33t22+t]∫10−2log(1+1)∫10 =2[13−12+1]−2log(2) =2[2−3+66]−2log(2) =53−log4
∫π0dx3+2sinx+cosx =∫π0dx(1+tan2x2)3(1+tan2x2)+2(2tanx2)+(1−tan2x2) =∫π0sec2x2dx2tan2x2+4tanx2+4 =∫π02d(tan2x2)(√2tanx2+√2)2+(√2)2 =∫π0d(tan2x2)(√2tanx2+√2)2+(√2)2 =∫π0d(tan2x2)(tanx2+1)2=tna−1(tanx2+1)∫π0 =π2−π4 =π4
∫k0dx2+8x2=π16 12∫k0dx1+(2x)2=π16 12(12)tan−1(2x)∫k0=π16 14tan−1(2k)=π16 tan−1(2k)=π4 2k=1 k=12
Consider, I=∫10sin(2tan−1√1−x1+x)dx
let, x=cosθ ⇒ dx=−sinθdθ
⇒ x→0⇒cosθ→π2 and x→1⇒cosθ→0
⇒ I=∫0π2sin(2tan−1(tan(θ2))(−sinθ)dθ
⇒ I=∫π20sin2θdθ=∫π20[1−cos2θ2]dθ
⇒ I=∫π2012dθ−12∫π20cos2θdθ
⇒ I=[(π4−0)+12sin2θ]π20
⇒ I=π4
∫π20(2tanx2+xsec2x2)dx =2∫π20(tanx2+12xsec2x2)dx =2∫π20d(xtanx2) =2(xtanx2)∫π20 =2[(π21)−0] =π
Consider, I=∫π/4−π/4log(cosx+sinx)dx
I=∫π4−π4log[√2sin(π4+x)]dx
let, π4+x=t ⇒ dx=dt
So, x→−π4⇒t→0 and x→π4⇒t→π2
⇒ I=∫π20log(√2sint)dt
⇒ I=∫π20log(√2)+∫π20log(sint)dt
⇒ I=π2log(√2)−π2log(2)
⇒ I=π4log2−π2log(2)
⇒ I=−π4log2
∫a0√a+xa−xdx
x=acosθ=dx−asinθdθ
=∫aπ2√a+acosθa−acosθ(−asinθ)dθ
=a∫π20√1+cosθ1−cosθsinθdθ
=a∫π20cosθ2sinθ2⋅2sinθ2dθ
=a∫π202cos2θ2dθ=a∫π20(cosθ−1)dθ
=a(sinθ)π20−(θ)π20
=a[1−0]−(π2)
=a(π2+1)
=a2(π+2)
∫10dx(x+√x) x=t2 ∫102tdtt2+t=2∫10dtt+1=2log(t+1)∫10 =2log(2)−2log(1) =2log2
In=∫π/2π/4(cot θ)n
In+In+2=∫π/2π/4[(cot θ)n+(cot θ)n+2]d θ
=∫π/2π/4(cot θ)ncosec2d θ
=∫π/2−π/4(cot θ)nd(cot θ)
−(cot θ)n+1n+1|π/2−π/4
−[0−1n+1]
=1n+1
∫7√211x(2x7+1)dx=∫7√211x8(2+1/x7)dx
1/x7=1⇒−7x8dx=dt
⇒dxx8−dx7
⇒1−7∫1/21dt(2+t)=17∫11/2[log(2+t)]11/2
=17[log(3)−log52]
=17log65
\displaystyle \int_{0}^{\pi/2}\dfrac{sinx+cosx}{3+sin2x}dx.
\displaystyle \int_{0}^{\pi/2}\dfrac{sinx+cosx}{4-(sinx-cosx)^{2}}
dx= \displaystyle \int_{0}^{\pi/2}\dfrac{d(sinx-cosx)}{(2)^{2}-(sinx-cosx)^{2}}
=\dfrac{1}{4}\log\left | \dfrac{2+(sinx-cosx)}{2-(sinx-cosx)} \right |_{0}^{\pi}
=\dfrac{1}{4}\left ( \log\left | \dfrac{2+0}{2-0} \right | -\log\left|\dfrac{2-1}{2+1}\right | \right )
=\dfrac{1}{4} (-\log \dfrac{1}{3})
= \dfrac{1}{4} \log(3)
\int_{0}^{1}\left ( \dfrac{2^{2x+1}+5^{2x-1}}{10x} \right )dx 2\int_{0}^{1}\left ( \dfrac{4}{10} \right )^{xdx}-1/5\int_{0}^{1}\dfrac{25}{10}^{x}dx =2\dfrac{(\dfrac{4}{10})^{x}}{log\dfrac{(4)}{10}}\int_{0}^{1}-\dfrac{\dfrac{1}{5}(\dfrac{25}{10})}{log(\dfrac{25}{10})} =\dfrac{2\left [ (\dfrac{4}{10})-1 \right ]}{log(2/5)}-\dfrac{1/5\left [ (\dfrac{25}{10}-1) \right ]}{log(5/2)} \dfrac{2(-3/5)}{l0g(2/5)}-\dfrac{1/5(3/2)}{log(5/2)} =-3/5\left [ \dfrac{2}{log(2/5)}+\dfrac{1}{2log}(5/2) \right ].
Please disable the adBlock and continue. Thank you.