Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 3 - MCQExams.com


10x1+xdx=
  • 53log4
  • 53+log4
  • 53log4
  • 35log435log4

π0dx3+2sinx+cosx=
  • π/3
  • π/4
  • π/6
  • π/2

lf k0dx2+8x2=π16 then k=
  • 1
  • 1/2
  • π/2
  • 2
Evaluate the following definite integral:
10 sin(2tan11x1+x)dx
  • π
  • π2
  • π3
  • π4
Let f(0)=0 and 20f(2t)ef(2t)dt=5.
Then the value of f(4) is?
  • log2
  • log7
  • log11
  • log13
The value of π/40sin12xcos52xdx is
  • 0
  • π4
  • 1
  • 23

π/20(2tanx2+xsec2x2)dx=
  • π
  • π/2
  • 2π/3
  • π/6
322x5x6x2dx=
  • π/2
  • π/2
  • π/3
  • π

Evaluate the following definite integral:
π/4π/4log(cosx+sinx)dx
  • π log2
  • π log2
  • π4log2
  • π2log2
Evaluate the integral
a0a+xaxdx
  • a2(π+2)
  • a2(π2)
  • a3(π+2)
  • a2(π+3)

10x1x3dx=
  • π4
  • π3
  • π6
  • π2
Evaluate: 11/21xx2dx
  • π/8
  • π/4
  • π/2
  • π

π2/4π2/16sinxxdx=
  • 2
  • 1/2
  • 2 2
  • π/2

(10n=12n2n1sin27xdx)+(10n=12n+12nsin27 xdx)=
  • 272
  • -54
  • 54
  • 0

10dxx+x=
  • log 2
  • 2 log 2
  • 3 log 3
  • 12 log2
If In=π/2π/4(Tanθ)n.dθ for (n>1) 
then In+In+2=?
  • 1n+1
  • 1n+1
  • 1n1
  • 1n1
Evaluate the integral
7211x(2x7+1)dx
  • log65
  • 6log65
  • 17log65
  • 15log65
Evaluate: π/40tan5xdx
  • log214
  • 12log214
  • 0
  • log2+14
If Un=π/40tannθdθthen u10+u12 is equal to:
  • 110
  • 112
  • 111
  • 122
10ddx tan1(1x)

  • π4
  • π4
  • π2
  • π2
Evaluate: π/40sec6x dx
  • 815
  • 2815
  • 358
  • 4415
Evaluate: π40(tan4x+tan2x)dx
  • 1
  • 1/2
  • 1/3
  • 1/4
If f(x)=|sinx+sin2x+sin3xsin2xsin3x3+4sinx34sinx1+sinxsinx1|, then the value of π20f(x)dx, is
  • 3
  • 23
  • 13
  • 0
cosθsinθf(xtanθ)dx(whereθnπ2,nϵI) is equal to
  • tan1f(xsinθ)dx
  • tanθcosθsinθf(x)dx
  • sinθtan1f(xcosθ)dx
  • 1tanθsinθtanθsinθf(x)dx
Evaluate: π/40tan6xdx
  • 1315π4
  • 1315+π4
  • π423
  • 13154π
lf In=π40 tannxdx, then lim
  • \displaystyle \dfrac{1}{2}
  • 1
  • \infty
  • 0
The value of \displaystyle \int_{3}^{5}\frac{x^{2}}{x^{2}-4} dx is
  • 2(1-\displaystyle \mathrm{l} \mathrm{o}\mathrm{g}_{\mathrm{e}}(\frac{15}{7}))
  • 2(1+\displaystyle \mathrm{l}\mathrm{o}\mathrm{g}_{\mathrm{e}}(\frac{15}{7}))
  • 2(1+4\log_{\mathrm{e}}3-4\log_{\mathrm{e}}7+4\log_{\mathrm{e}}5)
  • 2(1-\displaystyle \tan^{-1}(\frac{15}{7}))
Evalaute: \displaystyle \int_{-\pi/2}^{\pi/2}\sqrt{\cos x-\cos^{3}x}\ dx
  • \displaystyle \frac{3}{4}
  • -\displaystyle \frac{3}{4}
  • \displaystyle \frac{4}{3}
  • 0
Evaluate the integral
\displaystyle \int_{0}^{\pi/4}\frac{\sin x+\cos x}{3+\sin 2x} dx 
  • -\displaystyle \frac{1}{4} \log 3
  • \displaystyle \frac{1}{4} \log 3
  • -\displaystyle \frac{1}{3} \log 4 
  • \displaystyle \frac{1}{2}\log 3
Evaluate: \displaystyle \int_{0}^{1}\frac{x^{3}}{1+x^{8}} dx 
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{\pi}{8}
  • \displaystyle \frac{\pi}{16}
  • \displaystyle \frac{\pi}{2}
The value of x such that  \displaystyle \int_{\sqrt{2}}^{\mathrm{x}}\frac{1}{x\sqrt{x^{2}-1}}dx=\frac{\pi}{12} is
  • \mathrm{x}=3
  • \mathrm{x}=4
  • \mathrm{x}=1
  • \mathrm{x}=2

The value of the integral \displaystyle \int_{0}^{1}\frac{1}{(x^{2}+1)^{3/2}} dx is
  • \displaystyle \frac{3}{\sqrt {2}}
  • \displaystyle \frac { 1 }{ \sqrt { 2 } }
  • 1
  • {\sqrt{2}}

\displaystyle \int_{-3\pi/2}^{-\pi/2}[(x+\pi)^{3}+\cos^{2}(x+3\pi)]dx=
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{4}-1
  • \displaystyle \frac{\pi^{4}}{32}
  • \displaystyle \frac{\pi^{4}}{32}+\frac{\pi}{2}
lf f(x)=\left\{\begin{array}{l}e^{\cos x}\sin x, for |x|\leq 2\\2    ;       otherwise\end{array}\right., then \displaystyle \int_{-2}^{3}f(x)dx is
  • 0
  • 1
  • 2
  • 3

The function F(x)=\displaystyle \int_{0}^{x}\log(t+\sqrt{1+t^{2}})dt is
  • a periodic function
  • an even function
  • an odd function
  • even or odd

The value of \displaystyle \int_{0}^{1}\frac{2^{2x+1}-5^{2x-1}}{10^{x}} dx is
  • \displaystyle \frac{3}{5}\left[ \displaystyle \frac { 2 }{ \log _{ e } (\displaystyle \frac { 2 }{ 5 } ) } +\displaystyle \frac { 1 }{ 2\log _{ e } (\displaystyle \frac { 5 }{ 2 } ) } \right]
  • -\displaystyle \frac{3}{5}\left[ \displaystyle \frac { 2 }{ \log _{ e } (\displaystyle \frac { 2 }{ 5 } ) } +\displaystyle \frac { 1 }{ 2\log _{ e } (\displaystyle \frac { 5 }{ 2 } ) } \right]
  • \displaystyle \frac{3}{5}\left[\displaystyle \frac { 2 }{ \log _{ e } (\displaystyle \frac { 2 }{ 5 } ) } -\displaystyle \frac { 1 }{ 2\log _{ e } (\displaystyle \frac { 5 }{ 2 } ) } \right]
  • \displaystyle \frac{1}{2}[\log 2-\log 3]
If \displaystyle \int^{x}_{\log 2} \dfrac{1}{\sqrt{e^{x}-1}}dx = \dfrac{\pi}{6}

then x is equal to?
  • e^{2}
  • 1/e
  • \log 4
  • \log 2

lf \displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{x}dx=k\int_{0}^{\pi/2}\frac{x}{\sin x}dx, then the value of k is
  • 1
  • \displaystyle \frac{1}{4}
  • 4
  • {2}
Let \displaystyle \frac{d}{dx}F\left ( x \right )=\frac{e^{\sin x}}{x},x> 0. If \displaystyle \int_{1}^{4}\frac{2e^{\sin x^{2}}}{x}dx=F\left ( k \right )-F\left ( 1 \right ) then one of the possible values of \displaystyle k is
  • 4
  • \displaystyle -4
  • 16
  • none of these

The value of the integral \displaystyle \int_{0}^{\infty}\frac{1}{1+x^{4}} dx is
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{\sqrt{2}}
  • \displaystyle \frac{\pi}{2\sqrt{2}}
  • \pi/4
The value of integral  \displaystyle \int_{0}^{\infty }\frac{x\log x}{(1+x^2)^2}  \: dx is
  • 0
  • \log 7
  • 5\log 13
  • none\ of\ these
f k = e^{2007} then value of \displaystyle I =\int_{1}^{k}\frac{ \pi \cos (\pi \log x )} {x} dx is
  • 0
  • -\pi
  • \pi/e
  • 2007\pi
If I_1 = \displaystyle \int_x^1 \frac{1}{1 + t^2} dt and I_2 \displaystyle = \int_1^{1 / x}\frac{1}{1+ t^2}dt for x > 0, then
  • I_1 = I_2
  • I_1 > I_2
  • I_2 > I_1
  • none of these
Suppose that F(x) is an anti-derivative of \displaystyle f(x)=\frac{\sin x}{x}, where x>0.
Then \displaystyle \int_{1}^{3}\dfrac{\sin2x}{x} \:dx can be expressed as?
  • F(6)-F(2)
  • \dfrac{1}{2}(F(6)-F(2))
  • \dfrac{1}{2}(F(3)-F(1))
  • 2(F(6)-F(2))
If \displaystyle \int_{0}^{1}xe^{x^{2}}dx= \lambda \int_{0}^{1}e^{x^{2}}dx then \lambda
  • \displaystyle \lambda = 0
  • \displaystyle \lambda \epsilon = \left ( 0,1 \right )
  • \displaystyle \lambda \epsilon = \left (-\infty, 0 \right )
  • \displaystyle \lambda \epsilon = \left ( 1, 2 \right )
The value of \displaystyle \int_{1}^{2}\left [ f\left \{ g\left ( x \right ) \right \} \right ]^{-1}.{f}'\left \{ g\left ( x \right ) \right \}.{g}'\left ( x \right )dx, where \displaystyle g\left ( 1 \right )=g\left ( 2 \right ), is equal to?
  • 1
  • 2
  • 0
  • none of these
The value of  \displaystyle \int_{0}^{\pi /4}\frac{\sec x}{\left ( \sec x+\tan x \right )^{2}}dx is 
  • \displaystyle 1+\sqrt{2}
  • \displaystyle -\left ( 1+\sqrt{2} \right )
  • \displaystyle -\sqrt{2}
  • none of these
\displaystyle \int_{\pi /4}^{3\pi /4}\frac{dx}{1+\cos x} is equal to
  • 2
  • \displaystyle -2
  • 1 / 2
  • \displaystyle -1/2
The solution for x of the equation \displaystyle \int_{\sqrt{2}}^{x}\frac{dt}{t\sqrt{t^{2}-1}}=\frac{\pi }{2} is
  • \displaystyle \frac{\sqrt{3}}{2}
  • -\sqrt{2}
  • 2
  • \pi
The value of\displaystyle \int_{1}^{2}\frac{\cos \left ( \log x \right )}{x}dx  is equal to
  • 2\sin \left ( \log 2 \right )
  • \sin \left ( \log 2 \right )
  • \displaystyle\sin \log \left ( \frac{1}{2} \right )
  • None of these
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers