CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 4 - MCQExams.com

If $$\displaystyle f\left ( \frac{1}{x} \right )+x^{2}f\left ( x \right )=0$$ for $$x> 0,$$ 
and $$\displaystyle I=\int_{1/x}^{x}f\left ( z \right )dz, \frac{1}{2}\leq x\leq 2$$ 
then $$\displaystyle I$$ is?
  • $$\displaystyle f\left ( 2 \right )-f\left ( 1/2 \right )$$
  • $$\displaystyle f\left ( 1/2 \right )-f\left ( 2 \right )$$
  • $$0$$
  • None of these
If $$\displaystyle I_{1}= \int_{-4}^{-5}e^{\left ( x +5 \right )^{2}}dx$$ and $$\displaystyle I_{2}= 3\int_{{1}/{3}}^{{2}/{3}}e^{\left ( 3x -2 \right )^{2}}dx$$ 

then $$I_{1}+I_{2}$$ equals?
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle -\frac{1}{3}$$
  • $$0$$
  • None of these
If $$f\left ( a+x \right )= f\left ( x \right )$$ , then $$\forall$$ $$ a> 0,  n\epsilon  N$$ the value of $$\displaystyle \int_{0}^{n a}f\left ( x \right )dx$$  equals ?
  • $$\displaystyle \left ( n-1 \right )\int_{0}^{a}f\left ( x \right )dx$$
  • $$\displaystyle \left ( 1-n \right )\int_{0}^{a}f\left ( x \right )dx$$
  • $$\displaystyle n\int_{0}^{a}f\left ( x \right )dx$$
  • None of the above
If $$\displaystyle f\left ( x \right )=\int_{-1}^{1}\frac{\sin x}{1+t^{2}}dt$$ then $$\displaystyle {f}'\left ( \frac{\pi }{3} \right )$$ is
  • nonexistent
  • $$\displaystyle \pi /4$$
  • $$\displaystyle \pi \sqrt{3/4}$$
  • none of these
$$\displaystyle \int_{0}^{1}\frac{2^{x+1}-3^{x-1}}{6^{x}}dx$$
  • $$\displaystyle \frac{4}{3}\log _{3}e-\frac{1}{6}\log _{2}e.$$
  • $$\displaystyle -\frac{4}{3}\log _{3}e+\frac{1}{6}\log _{2}e.$$
  • $$\displaystyle \frac{4}{3}\log _{3}e-\frac{1}{3}\log _{2}e.$$
  • $$\displaystyle -\frac{2}{3}\log _{3}e+\frac{1}{6}\log _{2}e.$$
$$\displaystyle \int_{1}^{2}\left ( x+\frac{1}{x} \right )^{3/2}\frac{x^{2}-1}{x^{2}}dx$$
  • $$\displaystyle \frac{5}{2}\sqrt{\left ( \frac{5}{2} \right )}+\frac{8}{5}\sqrt{2}$$
  • $$\displaystyle \frac{5}{2}\sqrt{\left ( \frac{5}{2} \right )}-\frac{8}{5}\sqrt{2}$$
  • $$\displaystyle \sqrt{\left ( \frac{5}{2} \right )}-\frac{8}{5}\sqrt{2}$$
  • $$\displaystyle \frac{3}{2}\sqrt{\left ( \frac{3}{2} \right )}-\frac{8}{5}\sqrt{2}$$
Evaluate the integrals $$\displaystyle \int_{a}^{b}\frac{\log x}{x}dx$$
  • $$\displaystyle \frac{1}{2} \log\left ( ab\right )\cdot \log \frac{b}{a}$$
  • $$\displaystyle \frac{1}{4} \log\left ( ab\right )\cdot \log \frac{b}{a}$$
  • $$\displaystyle \log\left ( ab\right )\cdot \log \frac{b}{a}$$
  • $$\displaystyle -\frac{1}{2} \log\left ( ab\right )\cdot \log \frac{b}{a}$$
Given $$\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ { x }^{ 2 } } } dx=a,$$ the value of $$\displaystyle \int _{ e }^{ { e }^{ 4 } }{ \sqrt { \ln { \left( x \right)  }  } dx } $$ is?
  • $${ e }^{ 4 }-e$$
  • $${ e }^{ 4 }-a$$
  • $$2{ e }^{ 4 }-a$$
  • $$2{ e }^{ 4 }-e-a$$
$$\displaystyle \int_{0}^{\pi /2}\frac{dx}{\sin x}$$equals
  • $$0$$
  • $$\displaystyle \frac{1}{2}$$
  • $$1$$
  • $$3/2$$
The value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{\left ( x+1 \right )\sqrt{x^{2}+2x}}$$ is
  • $$\pi /6$$
  • $$\pi /3$$
  • $$\pi /2$$
  • $$\pi $$
Value of $$\displaystyle \int_{0}^{\pi /4}\left ( \sqrt{\tan x}-\sqrt{\cot x} \right )\: dx$$ is
  • $$\sqrt{2}\log \left ( \sqrt{2}-1 \right )$$
  • $$\sqrt{2}\log \left ( \sqrt{2}+1 \right )$$
  • $$\log \left ( \sqrt{2}+1 \right )$$
  • $$\log \left ( \sqrt{2}-1 \right )$$
The value of $$\displaystyle \int_{a}^{b}\displaystyle \frac{\log x}{x}\: dx$$ is
  • $$\log \left ( ab \right )\log \displaystyle \left ( \frac{b}{a} \right )$$
  • $$\displaystyle \frac{1}{2}\log \left ( ab \right )\log \displaystyle \left ( \frac{b}{a} \right )$$
  • $$\log \left ( a^{2}-b^{2} \right )$$
  • $$\left ( a+b \right )\log \left ( a+b \right )$$
If $$f\left ( x \right )= A\sin \left ( \dfrac {\pi x}{2} \right )\: +\: B,f{}'\left ( \dfrac 12  \right )= \sqrt{2}$$ and $$\displaystyle \int_{0}^{1}f\left ( x \right )dx= \displaystyle \frac{2A}{\pi }$$, 
then the constants $$A$$ and $$B$$ are
  • $$A=\dfrac {\pi}{2}, B=\dfrac {\pi}{2}$$
  • $$A=\dfrac {2}{\pi}, B=3\pi $$
  • $$A=0, B=-4\pi $$
  • $$A=\dfrac {4}{\pi}, B=0$$
The value of the integral $$\displaystyle \int_{0}^{\pi /4}\displaystyle \frac{\sin x+\cos x}{3+\sin 2x}dx$$ is
  • $$\log 2$$
  • $$\log 3$$
  • $$\left ( 1/4 \right )\log 3$$
  • $$\left ( 1/8 \right )\log 3$$
The value of $$\displaystyle \int_{0}^{\pi }\displaystyle \frac{dx}{1-2\alpha \cos x+\alpha ^{2}}$$ is
  • $$\displaystyle \frac{\pi }{1+\alpha ^{2}}$$ if $$\alpha > 1$$
  • $$\displaystyle \frac{\pi }{\alpha ^{2}-1}$$ if $$\alpha > 1$$
  • $$\displaystyle \frac{\pi }{1+\alpha ^{2}}$$ if $$\alpha < 1$$
  • $$\displaystyle \frac{\pi }{\alpha ^{2}-1}$$ if $$\alpha < 1$$
If $$I= \displaystyle \int_{1}^{2}\displaystyle \frac{dx}{\left ( x+1 \right )\sqrt{x^{2}-1}}$$ then $$I$$ is equal to
  • $$1$$
  • $$1/2$$
  • $$1/\sqrt{2}$$
  • $$1/\sqrt{3}$$
The value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{e^{x}+e^{-x}}$$ is
  • $$\tan ^{-1}e$$
  • $$\tan ^{-1}\left ( e \right )-\pi /4$$
  • $$\tan ^{-1}\left ( e \right )-\tan ^{-1}\left ( 1/e \right )$$
  • $$\tan ^{-1}\left ( 1/e \right )+\pi /4$$
The value of $$\displaystyle \int_{8}^{15}\displaystyle \frac{dx}{\left ( x-3 \right )\sqrt{x+1}}$$ is
  • $$\log \displaystyle \frac{5}{3}$$
  • $$\displaystyle \frac{1}{2}\log \displaystyle \frac{5}{3}$$
  • $$2\log \displaystyle \frac{5}{3}$$
  • $$\sqrt{2}\log \left ( \sqrt{2}-1 \right )$$
If $$b > a,$$ and $$\displaystyle  I = \int _{a}^{b} \sqrt{\frac{ x-a}{b-x} }dx,$$ then $$I$$ equals
  • $$ \displaystyle \frac{\pi}{2} (b -a)$$
  • $$\pi (b -a)$$
  • $$\pi/2 $$
  • $$ 2\pi (b-a)$$
Value of $$\displaystyle \int_{0}^{2a}\dfrac{x^{3/2}}{\sqrt{2a-x}} dx$$ is
  • $$\displaystyle \frac{3\pi a^{2}}{2}$$
  • $$\pi a^{3}$$
  • $$\sqrt{2}\pi a^{3}$$
  • $$2\pi a^{3}$$
Value of $$\displaystyle \int_{0}^{25}\displaystyle \frac{1}{\sqrt{4+\sqrt{x}}}\: dx$$ is
  • $$2\left ( \sqrt{29}-1 \right )$$
  • $$2\left ( \sqrt{29}-5 \right )$$
  • $$3 \sqrt{29}-1 $$
  • none of these
$$\displaystyle \int_{0}^{\infty }f\left ( x+\frac{1}{x} \right )\frac{\ln x}{x}dx$$
  • is equal to zero
  • is equal to one
  • is equal to $$\displaystyle \frac{1}{2}$$
  • can not be evaluated
If$$\displaystyle \int_{0}^{\pi /3}\frac{\cos }{3+4\sin x}dx=K\log \frac{\left ( 3+2\sqrt{3} \right )}{3}$$ then K is
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{1}{8}$$
Suppose that F(x) is an antiderivative of f(x)$$\displaystyle =\frac{\sin x}{x},x> 0$$ then $$\displaystyle \int_{1}^{3}\frac{\sin 2x}{x}$$ can be expressed as
  • $$F(6) - F(2)$$
  • $$\displaystyle \frac{1}{2}\left ( F\left ( 6 \right )-F\left ( 2 \right ) \right )$$
  • $$\displaystyle \frac{1}{2}\left ( F\left ( 3 \right )-F\left ( 1 \right ) \right )$$
  • $$\displaystyle 2\left ( F\left ( 6 \right )-F\left ( 2 \right ) \right )$$
If $$0 < \alpha < 1$$ and $$\displaystyle I=\int _{-1}^{1} \frac{dx}{\sqrt{1-2\alpha x+\alpha^{2}}} $$ then $$I$$ equals
  • $$1/\alpha $$
  • $$ 2/\alpha $$
  • $$ 3/\alpha$$
  • none of these
$$\displaystyle \int_{1/2}^{2}\frac{1}{x}\sin \left ( x-\frac{1}{x} \right )dx$$ has the value equal to 
  • $$0$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \frac{5}{4}$$
  • $$2$$
The value of the definite integral $$\displaystyle \int_{1}^{\infty}\left ( e^{x+1}+e^{3-x} \right )^{-1}dx$$ is
  • $$\displaystyle \frac{\pi }{4e^{2}}$$
  • $$\displaystyle \frac{\pi }{4e}$$
  • $$\displaystyle \frac{1}{e^{2}}\left ( \frac{\pi }{2}-\tan ^{-1}\frac{1}{e} \right )$$
  • $$\displaystyle \frac{\pi }{2e^{2}}$$
$$\displaystyle \int ^{\displaystyle \frac{3 \pi}{10}}_{\displaystyle \frac{\pi}{5}} \frac{sin x}{sin x + cos x}dx $$ is equal to 
  • $$\pi$$
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$\displaystyle \frac{\pi}{20}$$
If $$\displaystyle f\left ( x \right )=\int_{1}^{x}\frac{\ln t}{1+t}dt$$ where $$x > 0$$, then the value(s) of $$x$$ satisfying the equation, $$f(x) +f(1/x)=2$$ is
  • $$2$$
  • $$e$$
  • $$\displaystyle e^{-2}$$
  • $$\displaystyle e^{2}$$
Choose a function $$f(x)$$ such that it is integrable over every interval on the real line
  • $$f(x) = [x]$$
  • $$f(x)=x|x|$$
  • $$f(x)=[sinx]$$
  • $$f(x)=\dfrac{|x-1|}{x-1}$$
$$\displaystyle \int_{0}^{\infty }\frac{x}{\left ( 1+x \right )\left ( 1+x^{2} \right )}dx$$
  • $$\displaystyle \frac{\pi }{4}$$
  • $$\displaystyle \frac{\pi }{2}$$
  • is sme as $$\displaystyle \int_{0}^{\infty }\frac{dx}{\left ( 1+x \right )\left ( 1+x^{2} \right )}$$
  • cannot be evaluated
State true or false:
The average value of the function $$f(x) = sin^2xcos^3x$$ on the interval $$[ -\pi ,\pi ]$$ is 0.
  • True
  • False
$$I_{1}$$ is equal to
  • $$\displaystyle \frac {2}{3} \int_{0}^{\pi/2}(sin^{2}\theta)(cos\theta)^{-1/3}d\theta$$
  • $$\displaystyle \frac {3}{2} \int_{0}^{\pi/2}(sin^{2}\theta)(cos\theta)^{-1/3}d\theta$$
  • $$\displaystyle \frac {2}{3} \int_{0}^{\pi/2}(sin\theta)^{2/3}(cos\theta)^{-1/3}d\theta$$
  • $$\displaystyle \frac {3}{2} \int_{0}^{\pi/2}(sin\theta)^{2/3}(cos\theta)^{-1/3}d\theta$$
Evaluate $$\displaystyle \int_{0}^{\pi /2} \frac{dx}{2+\sin 2x}$$
  • $$\displaystyle \frac{2\pi }{{3}}$$
  • $$\displaystyle \frac{\pi }{{3}}$$
  • $$\displaystyle \frac{2\pi }{{5}}$$
  • None of these
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Both Assertion and Reason are incorrect
$$\displaystyle \int_{\tfrac{1}{\sqrt{3}}}^{0}\dfrac{dx}{\left ( 2x^{2}+1 \right )\sqrt{x^{2}+1}}$$
  • $$\displaystyle - \tan^{-1} \dfrac{1}{2}$$
  • $$\displaystyle \tan^{-1} 1$$
  • $$\displaystyle - \tan^{-1} \dfrac{1}{3}$$
  • $$\displaystyle \tan^{-1} \dfrac{1}{\sqrt 2}$$
The value of definite integral $$\displaystyle \int_{\infty }^{0}\frac{Ze^{-z}}{\sqrt{1-e^{-2z}}}dz$$
  • $$\displaystyle -\frac{\pi }{2}ln2$$
  • $$\displaystyle \frac{\pi }{2}ln2$$
  • $$\displaystyle -\pi ln2$$
  • $$\displaystyle \pi ln\frac{1}{\sqrt{2}}$$
The derivative of $$F(x)=\displaystyle\int^{x^3}_{x^2}\frac{dt}{log t}(x >0)$$ is 
  • $$\displaystyle\frac{1}{3log x}$$
  • $$\displaystyle\frac{1}{3log x}-\frac{1}{2log x}$$
  • $$(log x)^{-1}x(x-1)$$
  • $$\displaystyle\frac{3x^2}{log x}$$
If $$\displaystyle \int _{ 0 }^{ 1 }{ { e }^{ { x }^{ 2 } }\left( x-\alpha  \right)  } dx=0$$, then
  • $$1<\alpha <2$$
  • $$\alpha <2$$
  • $$0<\alpha<1$$
  • $$\alpha=0$$
Trapezoidal rule for evaluation of $$\displaystyle\int _{ a }^{ b }{ f(x)dx } $$ requires the interval $$(a,b)$$ to be divided into
  • $$2n$$ sub-intervals of equal width
  • any number of sub intervals of not equal width
  • any number of sub intervals of equal width
  • $$3n$$ sub-intervals of equal width
$$\displaystyle \int _{ 0 }^{ a }{ \frac { dx }{ a+\sqrt { { a }^{ 2 }-{ x }^{ 2 } }  }  } $$ is equal to
  • $$\displaystyle \frac { \pi  }{ 2 } +1$$
  • $$\displaystyle \frac { \pi  }{ 2 } -1$$
  • $$\displaystyle 1-\frac { \pi  }{ 2 } $$
  • none of these
The value of the integral $$\int_0^{\dfrac{\pi}{2}}\,sin^5x\,dx$$ is
  • $$\dfrac{4}{15}$$
  • $$\dfrac{8}{5}$$
  • $$\dfrac{8}{15}$$
  • $$\dfrac{4}{5}$$
Using Trapezoidal rule and following table $$\int_0^8 {f(x)}dx$$ is equal to 
$$x$$02468
$$f(x)$$25101726
  • $$184$$
  • $$92$$
  • $$46$$
  • $$-36$$
$$\displaystyle \int_1^{\sqrt 3}\frac {dx}{1+x^2}$$ equals
  • $$\dfrac {\pi}{3}$$
  • $$\dfrac {2\pi}{3}$$
  • $$\dfrac {\pi}{6}$$
  • $$\dfrac {\pi}{12}$$
$$\displaystyle\int _{ 1 }^{ 3 }{ \dfrac { \cos { \left( \log { x }  \right)  }  }{ x } dx } $$ is equal to
  • $$1$$
  • $$\cos { \left( \log { 3 } \right) } $$
  • $$\sin { \left( \log { 3 } \right) } $$
  • $$\dfrac { \pi }{ 4 } $$
The value of $$I=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ \left( \tan ^{ n+1 }{ x }  \right) dx } +\frac { 1 }{ 2 } \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \left( \tan ^{ n+1 }{ \left( \frac { x }{ 2 }  \right)  }  \right) dx } $$ is
  • $$\cfrac{1}{n}$$
  • $$\cfrac{n+2}{2n+1}$$
  • $$\cfrac{2n-1}{n}$$
  • $$\cfrac{2n-3}{3n-2}$$
What is $$\displaystyle \int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x }  }{ 1+{ x }^{ 2 } }  } dx$$ equal to?
  • $$\cfrac { { \pi }^{ 2 } }{ 8 } $$
  • $$\cfrac { { \pi }^{ 2 } }{ 32 } $$
  • $$\cfrac { \pi }{ 4 } $$
  • $$\cfrac { \pi }{ 8 } $$
What is $$\displaystyle\int _{ 1 }^{ 2 }{ \ln { x } dx } $$ equal to?
  • $$\ln { 2 } $$
  • $$1$$
  • $$\ln { \left( \dfrac { 4 }{ e } \right) } $$
  • $$\ln { \left( \dfrac { e }{ 4 } \right) } $$
If $$\displaystyle \int_{0}^{b} \displaystyle \frac{dx}{1\, +\, x^2}\, =\, \displaystyle \int_{b}^{\infty} \displaystyle \frac{dx}{1\, +\, x^2}$$, then $$b = $$
  • $$\tan ^{-1}\, \left (\displaystyle \frac{1}{3} \right )$$
  • $$\displaystyle \frac{\sqrt 3}{2}$$
  • $$\sqrt 3$$
  • $$1$$
Select and write the most appropriate answer from the given alternatives for question :
If $$\displaystyle \int^k_0 4x^3dx=16$$, then the value of $$k$$ is _____.
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers