Processing math: 100%

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 6 - MCQExams.com

π0xln(sinx)dx=
  • π2ln2
  • π22ln2
  • π2ln2
  • 2p ln2
Evaluate π0dx(1+sinx)
  • 12
  • 1
  • 2
  • 0
Evaluate 20dx4x2
  • 1
  • sin112
  • π4
  • None of these
10sin(2tan11+x1x)dx=
  • π6
  • π4
  • π2
  • π
2π0ln(1+cosx)dx=
  • πln2
  • πln2
  • 2πln2
  • 2πln2
Evaluate π2π4(tanx+cotx)dx=
  • π22
  • π2
  • π2
  • π3
402x+3x2+3x+2dx
  • log3
  • log5
  • log15
  • log2
Let I=31x4+x2dx,then I= 
  • 1>610
  • 1<22
  • 22<1<610
  • none of above
π4011+2sin2xdx
  • π33
  • π33
  • π23
  • π3
π/40sec4xdx.
  • 34
  • 34
  • 43
  • 54
For x>0, let f(x)=x1logt1+tdt . Then f(x)+f(1x) is equal to:
  • 14(logx)2
  • 12(logx)2
  • logx
  • 14logx2
Evaluate 10x3(1+x8)dx
  • π2
  • π4
  • π8
  • π16
The value of π20log(4+3sinx4+3cosx)dx is
  • 2
  • 34
  • 0
  • 2
π/40tan2xdx=
  • 1π4
  • 1+π4
  • π41
  • π41
The value of x0(t|t|)2(1+t2)dt is equal to 
  • 4(xtan1x), ifx<0
  • 0ifx>0
  • ln(1+x3) ifx>0
  • 4(x+tan1x)ifx<0
The integral π/4π/128cos2x(tanx+cotx)3dx  equals:
  • 15128
  • 1564
  • 1332
  • 13256
If 10tan1xxdx=kπ/20xsinxdx then the value of k is
  • 1
  • 14
  • 4
  • 12
The solution for x of the equation x2dttt21=π2 is?
  • 2
  • π
  • 3/2
  • 22
π02(1+cosx)7/2dx=?
  • 3235
  • 6435
  • 25635
  • 51235
Solve eldxln(xxex) 
  • ln2
  • 2ln2
  • ln2
  • None of these
The value of 0logx1+x2dx, equals
  • π2 log2
  • π2 log2
  • 0
  • π4 log2
Evaluate:
π/20sinxcosx1+sinxcosxdx 
  • 0
  • 1
  • π2
  • π4
Evaluate 10xex(1+x)2dx
  • (e21)
  • (e1)
  • e(e1)
  • None of these
Evaluate π/2π/3cosecxdx
  • 12log2
  • 12log3
  • log2
  • None of these
lnπlnπln2ex1cos(23ex)dx is equal to
  • 3
  • 3
  • 13
  • 13
Solve ln320ex+1e2x+1dx
  • π2+12ln(32)
  • π12+12ln(32)
  • π12+12ln(32)
  • None of these 
(1+2x+3x2+4x3+...)dx=
  • (1+x)1+c
  • (1x)1+c
  • (1x)11+c
  • None of these
Evaluate π0x1+sinxdx.
  • xtanxln|cosx|xsecxln|secxtanx|+C
  • xtanx+ln|cosx|xsecxln|secxtanx|+C
  • tanx+ln|cosx|xsecxln|secxtanx|+C
  • None of these
Evaluate π/3π/6dx1+tanx.
  • π12
  • 7π12
  • 5π12
  • None of these
Obtain π01+cos2xdx
  • 2
  • 12
  • 0
  • None of these
π0xdx1+sinx=
  • π6
  • π
  • π3
  • none of these
102x1x4dx is equal to?
  • π
  • π2
  • 2π
  • 0
Evaluate π/2π/4cotxdx
  • log2
  • 2log2
  • 12log2
  • None of these
The value of the integral 113(xx3)13x4dx is?
  • 6
  • 0
  • 3
  • 4
sin1x(1x2)32dx
  • x(sin1x)1x2+12log|(1x2)|+C.
  • 12log|(1x2)|+C
  • x(sin1x)1x2+C
  • 4+π2
11|x|dx=a then -
  • a=1
  • a=2
  • a=3
  • a=4
What is the value of a0xax+a dx?
  • a+2alog2
  • a2alog2
  • 2alog2a
  • 2alog2
The value of π/20xsinxcosxsin4x+cos4xdxis is 
  • π24
  • π28
  • π216
  • 3π216
e1/e|lnx|dx equals
  • e11
  • 2(11e)
  • 11e
  • e1
π/40x.sec2xdx=?
  • π4+log2
  • π4log2
  • 1+log2
  • 112log2
π0xdx1+sinx =
  • π6
  • π
  • π3
  • Cannot be valued
ln(1+x)1+xdxequals
  • (ln(1+x))22
  • πln(1+x)
  • π2ln(1+x)
  • π2ln(1+x)
10tan1(2x11+xx2)dx is equal to
  • 0
  • 1
  • 1
  • None of these
If ddx(ϕ(x))=f(x), then 21f(x) is equal to.
  • f(1)f(2)
  • ϕ(1)ϕ(2)
  • f(2)f(1)
  • ϕ(2)ϕ(1)
State whether the statement is ture/false.

 π/2π/2(sinx1cosx)dx=0
  • True
  • False
Evaluate: π/20sinxcosxcos2x+3cosx+2dx
  • ln(53)
  • ln(43)
  • ln(13)
  • None of these
The value of the integral 101+2xdx is 
  • 2
  • 3
  • 4
  • 14
Solve:
π/60cos2x(cosxsinx)2dx
  • log(312)
  • log(3+12)
  • log(3+12)
  • None of these
Solve π/20sin4xcos3xdx 
  • 635
  • 221
  • 215
  • 235
Evaluate (secθ)(tan2θ)dθ
  • 1cosθ+c
  • 1sinθ+c
  • 1tanθ+c
  • 1cosecθ+c
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers