Processing math: 55%

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 6 - MCQExams.com

π0xln(sinx)dx=
  • π2ln2
  • π22ln2
  • π2ln2
  • 2p ln2
Evaluate π0dx(1+sinx)
  • 12
  • 1
  • 2
  • 0
Evaluate 20dx4x2
  • 1
  • sin112
  • π4
  • None of these
10sin(2tan11+x1x)dx=
  • π6
  • π4
  • π2
  • π
2π0ln(1+cosx)dx=
  • πln2
  • πln2
  • 2πln2
  • 2πln2
Evaluate π2π4(tanx+cotx)dx=
  • π22
  • π2
  • π2
  • π3
402x+3x2+3x+2dx
  • log3
  • log5
  • log15
  • log2
Let I=31x4+x2dx,then I= 
  • 1>610
  • 1<22
  • 22<1<610
  • none of above
π4011+2sin2xdx
  • π33
  • π33
  • π23
  • π3
π/40sec4xdx.
  • 34
  • 34
  • 43
  • 54
For x>0, let f(x)=x1logt1+tdt . Then f(x)+f(1x) is equal to:
  • 14(logx)2
  • 12(logx)2
  • logx
  • 14logx2
Evaluate 10x3(1+x8)dx
  • π2
  • π4
  • π8
  • π16
The value of π20log(4+3sinx4+3cosx)dx is
  • 2
  • 34
  • 0
  • 2
π/40tan2xdx=
  • 1π4
  • 1+π4
  • π41
  • π41
The value of x0(t|t|)2(1+t2)dt is equal to 
  • 4(xtan1x), ifx<0
  • 0ifx>0
  • ln(1+x3) ifx>0
  • 4(x+tan1x)ifx<0
The integral π/4π/128cos2x(tanx+cotx)3dx  equals:
  • 15128
  • 1564
  • 1332
  • 13256
If 10tan1xxdx=kπ/20xsinxdx then the value of k is
  • 1
  • 14
  • 4
  • 12
The solution for x of the equation x2dttt21=π2 is?
  • 2
  • π
  • 3/2
  • 22
π02(1+cosx)7/2dx=?
  • 3235
  • 6435
  • 25635
  • 51235
Solve eldxln(xxex) 
  • ln2
  • 2ln2
  • ln2
  • None of these
The value of 0logx1+x2dx, equals
  • π2 log2
  • π2 log2
  • 0
  • π4 log2
Evaluate:
π/20sinxcosx1+sinxcosxdx 
  • 0
  • 1
  • π2
  • π4
Evaluate 10xex(1+x)2dx
  • (e21)
  • (e1)
  • e(e1)
  • None of these
Evaluate π/2π/3cosecxdx
  • 12log2
  • 12log3
  • log2
  • None of these
lnπlnπln2ex1cos(23ex)dx is equal to
  • 3
  • 3
  • 13
  • 13
Solve ln320ex+1e2x+1dx
  • π2+12ln(32)
  • π12+12ln(32)
  • π12+12ln(32)
  • None of these 
\int (1 + 2x + 3x^2 + 4x^3 + ...)dx =
  • (1 + x)^{-1} + c
  • (1 - x)^{-1} + c
  • (1 - x)^{-1} - 1 + c
  • None of these
Evaluate \displaystyle\int^{\pi}_0\dfrac{x}{1+\sin x}dx.
  • x\tan x - ln|\cos x| - x\sec x -ln|\sec x - \tan x| + C
  • x\tan x + ln|\cos x| - x\sec x -ln|\sec x - \tan x| + C
  • \tan x + ln|\cos x| - x\sec x -ln|\sec x - \tan x| + C
  • None of these
Evaluate \displaystyle\int^{\pi/3}_{\pi/6}\dfrac{dx}{1+\sqrt{\tan x}}.
  • \cfrac{\pi}{12}
  • \cfrac{7\pi}{12}
  • \cfrac{5\pi}{12}
  • None of these
Obtain \displaystyle \int _{ 0 }^{ \pi  }{ \sqrt { 1+\cos { 2x }  } dx }
  • 2
  • 12
  • 0
  • None of these
\displaystyle \underset{0}{\overset{\pi}{\int}} \dfrac{x \, dx}{1 + \sin \, x} =
  • \dfrac{\pi}{6}
  • \pi
  • \dfrac{\pi}{3}
  • none of these
\displaystyle\int^1_0\dfrac{2x}{\sqrt{1-x^4}}dx is equal to?
  • \pi
  • \dfrac{\pi}{2}
  • 2\pi
  • 0
Evaluate \displaystyle\int^{\pi/2}_{\pi/4}\cot xdx
  • log 2
  • 2 log 2
  • \dfrac{1}{2}log 2
  • None of these
The value of the integral \displaystyle\int^{1}_{\dfrac{1}{3}}\dfrac{(x-x^3)^{\dfrac{1}{3}}}{x^4}dx is?
  • 6
  • 0
  • 3
  • 4
\int {\frac{{{{\sin }^{ - 1}}x}}{{{{\left( {1 - {x^2}} \right)}^{\frac{3}{2}}}}}dx}
  • \frac{{x\left( {{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }} + \frac{1}{2}\log \left| {\left( {1 - {x^2}} \right)} \right| + C.
  • \frac{1}{2}\log \left| {\left( {1 - {x^2}} \right)} \right| + C
  • \frac{{x\left( {{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}+C
  • 4+\frac { \pi }{ 2 }
\displaystyle\int \limits_{ -1 }^{ 1 }|x| dx = a then -
  • a=1
  • a=2
  • a=3
  • a=4
What is the value of \int_{0}^{a}\dfrac{x-a}{x+a}\ dx?
  • a+2a\log 2
  • a-2a\log 2
  • 2a\log 2-a
  • 2a\log 2
The value of \int\limits_0^{\pi /2} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx\,is} is 
  • \dfrac{{{\pi ^2}}}{4}
  • \dfrac{{{\pi ^2}}}{8}
  • \dfrac{{{\pi ^2}}}{{16}}
  • \dfrac{{3{\pi ^2}}}{{16}}
\displaystyle \int_{1/e}^{e}{|\ln x|dx} equals
  • e^{-1}-1
  • 2\left (1-\dfrac {1}{e}\right)
  • 1-\dfrac {1}{e}
  • e-1
\int _{ 0 }^{ \pi /4 }{ x.\sec ^{ 2 }{ x } dx=? }
  • \frac {\pi}{4}+\log {\sqrt {2}}
  • \frac {\pi}{4}-\log {\sqrt {2}}
  • 1+\log {\sqrt {2}}
  • 1-\frac{1}{2}\log {2}
\displaystyle \underset{0}{\overset{\pi}{\int}} \dfrac{x \, dx}{ 1 + \sin \, x} =
  • \dfrac{\pi}{6}
  • \pi
  • \dfrac{\pi}{3}
  • Cannot be valued
\displaystyle\int  {\dfrac{{\ln \left( {1 + {x}} \right)}}{{1 + {x}}}} dx\,equals
  • \dfrac {(\ln (1+x))^2}2
  • - \pi \ln (1+x)
  • \frac{\pi }{2}\ln (1+x)
  • - \frac{\pi }{2}\ln (1+x)
\int _{ 0 }^{ 1 }{ \tan ^{ -1 }{ \left( \cfrac { 2x-1 }{ 1+x-{ x }^{ 2 } }  \right)  }  } dx is equal to
  • 0
  • 1
  • -1
  • None of these
If \frac{d}{dx}(\phi (x))=f(x), then \int_1^2 {f\left( x \right)} is equal to.
  • f(1)-f(2)
  • \phi(1)-\phi(2)
  • f(2)-f(1)
  • \phi(2)-\phi(1)
State whether the statement is ture/false.

 \displaystyle \int _ { - \pi / 2 } ^ { \pi / 2 } \left( \frac { \sin x } { 1 - \cos x } \right) d x=0
  • True
  • False
Evaluate: \displaystyle\int _ { 0 } ^ { \pi / 2 } \dfrac { \sin x \cos x } { \cos ^ { 2 } x + 3 \cos x + 2 }dx
  • \ln\left(\dfrac {5}{3}\right)
  • \ln\left(\dfrac {4}{3}\right)
  • \ln\left(\dfrac {1}{3}\right)
  • None of these
The value of the integral \displaystyle \int_0^{1} {{1 + 2 x}}dx is 
  • 2
  • 3
  • 4
  • \frac{ - 1}{4}
Solve:
\int\limits_0^{\pi /6} {\dfrac{{\cos 2x}}{{{{\left( {\cos x - \sin x} \right)}^2}}}dx}
  • - \log \left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)
  • - \log \left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)
  • \log \left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)
  • None of these
Solve \displaystyle\int\limits_0^{\pi /2} {{{\sin }^4}x{{\cos }^3}xdx}  
  • \dfrac {6}{35}
  • \dfrac {2}{21}
  • \dfrac {2}{15}
  • \dfrac {2}{35}
Evaluate \displaystyle\int \frac{ (\sec \theta)}{(\tan^2 \theta)} d \theta
  • \dfrac{1}{cos \theta}+c
  • -\dfrac{1}{sin \theta}+c
  • \dfrac{1}{tan \theta}+c
  • \dfrac{1}{cosec \theta}+c
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers