CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 7 - MCQExams.com

$$\displaystyle \int _{ 0 }^{ \pi /4 }{ \log { \left( 1+\tan ^{ 2 }{ \theta  } +2\tan { \theta  }  \right) d\theta = }  }$$
  • $$\pi \log 2$$
  • $$(\pi \log 2)/2$$
  • $$(\pi \log 2)/4$$
  • $$\log 2$$
If $$\displaystyle\int {{{{2^x}} \over {\sqrt {1 - {4^x}} }}dx = K{{\sin }^{ - 1}}} ({2^x}) + C,$$ then K is equal to 
  • $$\ell n2$$
  • $$\displaystyle{1 \over 2}\ell n2$$
  • $$\displaystyle{1 \over 2}$$
  • $$\displaystyle{1 \over {\ell n2}}$$
The value of the defined integral $$\displaystyle \int^{\pi/2}_{0}(\sin x+\cos x)\sqrt {\dfrac {e^{x}}{\sin x}}dx$$ equals
  • $$2\sqrt {e^{\pi/2}}$$
  • $$\sqrt {e^{\pi/2}}$$
  • $$2\sqrt {e^{\pi/2}}.\cos 1$$
  • $$\dfrac {1}{2}e^{\pi/4}$$
Evaluate $$\displaystyle\int^{\pi/2}_0\dfrac{\cos x}{(1+\sin^2x)}dx$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{4}$$
  • $$\pi$$
  • None of these
Evaluate $$\displaystyle\int^{\sqrt{8}}_{\sqrt{3}}x\sqrt{1+x^2}dx$$
  • $$\dfrac{19}{3}$$
  • $$\dfrac{19}{6}$$
  • $$\dfrac{38}{3}$$
  • $$\dfrac{9}{4}$$
Evaluate $$\displaystyle\int^{\pi/2}_0\cos^3xdx $$
  • $$1$$
  • $$\dfrac{3}{4}$$
  • $$\dfrac{2}{3}$$
  • None of these
Evaluate : $$\displaystyle\int^1_0\sqrt{\dfrac{1-x}{1+x}}dx$$
  • $$\dfrac{\pi}{2}$$
  • $$\left(\dfrac{\pi}{2}-1\right)$$
  • $$\left(\dfrac{\pi}{2}+1\right)$$
  • None of these
Evaluate: $$\int _{ 1/3 }^{ 1 }{ \cfrac { { \left( x-{ x }^{ 3 } \right)  }^{ 1/3 } }{ { x }^{ 4 } }  } dx=$$
  • $$3$$
  • $$0$$
  • $$6$$
  • $$4$$
Evaluate$$\displaystyle \int _ { 0 } ^ { a } \dfrac { x d x } { \sqrt { a ^ { 2 } + x ^ { 2 } } } $$
  • $$a ( \sqrt { 2 } - 1 )$$
  • $$a ( 1 - \sqrt { 2 } )$$
  • $$a ( 1 + \sqrt { 2 } )$$
  • $$2 a \sqrt { 3 }$$
The correct evaluation of $$\displaystyle \int _ { 0 } ^ { \pi / 2 } \sin x \sin 2 x$$ is 
  • $$\dfrac { 4 } { 3 }$$
  • $$\dfrac { 1 } { 3 }$$
  • $$\dfrac { 3 } { 4 }$$
  • $$\dfrac { 2 } { 3 }$$
$$\int { { e }^{ x^{ 3 } }+{ x }^{ 2-1 }(3{ x }^{ 4 }+{ 2x }^{ 3 }+{ 2x }^{ 2 }\quad x=h(x)+c } $$ then the value of $$h(1)h(-1)$$.
  • 1
  • -1
  • 2
  • -2
$$\int _{ 0 }^{ \pi  }{ \cfrac { { x }^{ 2 } }{ { \left( 1+sinx \right)  }^{ 2 } }  } dx$$ equals
  • $$\pi (\pi -2)$$
  • $$\pi ^2 (\pi -2)$$
  • $$\pi (2-\pi )$$
  • none of these
The value of the integral $$\displaystyle \int_{-\pi/2}^{\pi/2} \left(x^{2}+\log \dfrac{\pi-x}{\pi+x}\right) \cos x dx $$ is 
  • $$0$$
  • $$\dfrac{\pi^{2}}{2}-4$$
  • $$\dfrac{\pi^{2}}{2}+4$$
  • $$\dfrac{\pi^{2}}{2}$$
Let  $$\theta$$  be the angle between the lines  $${ L }_{ { 1 } }:\left[ \begin{array}{l} { { x }=2{ t }+{ 1 } } \\ { { y }={ t }+{ 1 } } \\ { { z }=3{ t }+{ 1 } } \end{array} \right. $$  and  $${ L }_{ { 2 } }:\left[ \begin{array}{l} { { x }=3{ s }+2 } \\ { { y }=6{ s }-1 } \\ { { z }=4 } \end{array} \right. $$  where  $$s , t \in  { R }.$$  Then the value of  $$\int _ { 0 } ^ { \theta } \dfrac { 1 } { 1 + \tan x } d x =$$
  • $$\pi / 6$$
  • $$\pi / 4$$
  • $$\pi / 2$$
  • $$\pi / 3$$
Let $${ I }_{ 1 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right)  }^{ 100 }dx }$$ and $${ I }_{ 2 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right)  }^{ 101 }dx }$$, then $$\dfrac { { I }_{ 1 } }{ { I }_{ 2 } } =$$
  • $$\dfrac {5051}{5050}$$
  • $$\dfrac {5051}{5049}$$
  • $$\dfrac {51}{50}$$
  • $$\dfrac {101}{100}$$
$$\displaystyle\int _{ -9 }^{ 9 }{ \log { \left( x+\sqrt { { x }^{ 2 }+1 }  \right)  } dx } $$ equal 
  • $$2\log (9^{2}+1)$$
  • $$2\log (\sqrt{9^{2}+1}-9)$$
  • $$0$$
  • $$2\log (9+\sqrt{9^{2}+1})$$
If $$\displaystyle \int_{0}^{\dfrac{\pi}{3}}\dfrac{\tan \theta}{\sqrt{2k \sec \theta}}d\theta=1-\dfrac{1}{\sqrt{2}},(k>0),$$ then the value of k is :
  • $$2$$
  • $$\dfrac{1}{2}$$
  • $$4$$
  • $$1$$
The value of $$\displaystyle\int^{2\pi}_{0}\dfrac{x\sin^8x}{\sin^8x+\cos^8x}dx$$ is equal to?
  • $$2\pi$$
  • $$\pi^2$$
  • $$2\pi^2$$
  • $$4\pi$$
If $$f(a-x)=-f(x)$$, then $$\displaystyle \int_{0}^{a}f(x)dx=0$$.

  • True
  • False
$$\int _{ 0 }^{ 400\pi  }{ \sqrt { 1-\cos { 2x }  }  }$$
  • $$200\sqrt 2$$
  • $$400\sqrt 2$$
  • $$800\sqrt 2$$
  • $$none$$
$$\displaystyle \int_{0}^{1}\sin^{-1}x dx=\dfrac {\pi}{2}-1$$
  • True
  • False
Let a function $$f:R\rightarrow R$$ be defined as $$f\left( x \right) =x+\sin { x } $$. The value of $$\int _{ 0 }^{ 2\pi  }{ { f }^{ -1 }(x) } dx$$ will
  • $$2{ \pi }^{ 2 }$$
  • $$2{ \pi }^{ 2 }-2$$
  • $$2{ \pi }^{ 2 }+2$$
  • $${ \pi }^{ 2 }$$
The value of $$\displaystyle\int\limits_{0}^{\frac{\pi}{4}} \tan^2 \theta\  d\theta=$$
  • $$\dfrac{\pi}{4}-1$$
  • $$\dfrac{\pi}{4}$$
  • $$1-\dfrac{\pi}{4}$$
  • none of these
$$\int _{ 0 }^{ 1 }{ \frac { x }{ { \left( { x }^{ 2 }+1 \right)  }^{ \frac { 3 }{ 2 }  } } dx } =........$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{2}{3}$$
  • $$\dfrac{3}{2}$$
  • $$1-\dfrac{1}{\sqrt{2}}$$
$$\displaystyle\int^{1/2}_0\dfrac{dx}{(1+x^2)\sqrt{1-x^2}}$$ is equal to?
  • $$\dfrac{1}{\sqrt{2}}\tan^{-1}\sqrt{\dfrac{2}{3}}$$
  • $$\dfrac{2}{\sqrt{2}}\tan^{-1}\left(\dfrac{3}{\sqrt{2}}\right)$$
  • $$\dfrac{\sqrt{2}}{2}\tan^{-1}\left(\dfrac{3}{2}\right)$$
  • $$\dfrac{\sqrt{2}}{2}\tan^{-1}\left(\dfrac{\sqrt{3}}{2}\right)$$
$$\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } }  }  } $$ is equal to
  • $$\dfrac { \sqrt { e } }{ 2 } \left( \sqrt { 3 } +1 \right) $$
  • $$\dfrac { \sqrt { 3e } }{ 2 } $$
  • $$\sqrt { 3e } $$
  • $$\sqrt { \dfrac { e }{ 3 } } $$
$$\int _{ 1 }^{ 3} \dfrac{4x}{x^2+1} \, dx$$
  • $$\log { 5 } $$
  • $$\cfrac { 1 }{ 2 } \log { 5 } $$
  • $$\log { 25 } $$
  • $$\log { 100 } $$
If $$\int _{ log2 }^{ x }{ \dfrac { dx }{ \sqrt { { e }^{ x }-1 }  }  } =\dfrac { \pi  }{ 6 } ,$$then x is equal to _________.
  • 4
  • in 8
  • in 4
  • None of these
$$\displaystyle\int^1_0\dfrac{dx}{e^x+e^{-x}}$$ is equal to?
  • $$\dfrac{\pi}{4}-\tan^{-1}(e)$$
  • $$\tan^{-1}(e)-\dfrac{\pi}{4}$$
  • $$\tan^{-1}(e)+\dfrac{\pi}{4}$$
  • $$\tan^{-1}(e)$$
If $$\displaystyle\int^{\dfrac{\pi}{2}}_0\dfrac{\cot x}{\cot x+cosec x}dx=m(\pi +n)$$, then $$mn$$ is equal to?
  • $$-1$$
  • $$1$$
  • $$\dfrac{1}{2}$$
  • $$-\dfrac{1}{2}$$
Evaluate : $$\displaystyle\int^1_0\dfrac{dx}{(1+x+x^2)}$$
  • $$\dfrac{\pi}{\sqrt{3}}$$
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{3\sqrt{3}}$$
  • None of these
Evaluate$$\displaystyle\int^{\pi/2}_0e^x\left(\dfrac{1+\sin x}{1+\cos x}\right)dx$$
  • $$0$$
  • $$\dfrac{\pi}{4}$$
  • $$e^{\pi/2}$$
  • $$(e^{\pi/2}-1)$$
Evaluate : $$\displaystyle\int^{\sqrt{2}}_0\sqrt{2-x^2}dx$$
  • $$\pi$$
  • $$2\pi$$
  • $$\dfrac{\pi}{2}$$
  • None of these
Evaluate : $$\displaystyle\int^1_0\dfrac{(1-x)}{(1+x)}dx$$
  • $$(\log 2+1)$$
  • $$(\log 2-1)$$
  • $$(2 \log 2-1)$$
  • $$(2 \log 2+1)$$
Evaluate : $$\displaystyle\int^9_0\dfrac{dx}{(1+\sqrt{x})}$$
  • $$(3-2 log 2)$$
  • $$(3+2 log 2)$$
  • $$(6-2 log 4)$$
  • $$(6+2 log 4)$$
Evaluate : $$\displaystyle\int^2_{-2}|x|dx$$
  • $$4$$
  • $$3.5$$
  • $$2$$
  • $$0$$
Evaluate $$\displaystyle\int^{1}_0\dfrac{(1-x)}{(1+x)}dx$$
  • $$\dfrac{1}{2}log 2$$
  • $$(2log 2+1)$$
  • $$(2log 2-1)$$
  • $$\left(\dfrac{1}{2}log 2-1\right)$$
Evaluate $$\displaystyle\int^{\pi/6}_0\cos x\cos 2xdx$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{5}{12}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{7}{12}$$
The value of $$\displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx$$ is?
  • $$50\sqrt{2}$$
  • $$100\sqrt{2}$$
  • $$150\sqrt{2}$$
  • $$200\sqrt{2}$$
Evaluate : $$\displaystyle\int^2_1|x^2-3x+2|dx$$
  • $$\dfrac{-1}{6}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{2}{3}$$
Given $$I_{m}=\displaystyle \int_{1}^{e}(\log x)^{m} d x .$$ If $$\dfrac{I_{m}}{K}+\dfrac{I_{m-2}}{L}=e,$$ then the values of $$K$$ and $$L$$ are
  • $$\dfrac{1}{1-m}, \dfrac{1}{m}$$
  • $$(1-m), \dfrac{1}{m}$$
  • $$\dfrac{1}{1-m}, \dfrac{m(m-2)}{m-1}$$
  • $$\dfrac{m}{m-1}, m-2$$
$$\displaystyle\int^a_{-a}x|x|dx=?$$
  • $$0$$
  • $$2a$$
  • $$\dfrac{2a^3}{3}$$
  • None of these
$$\displaystyle\int^1_{-2}\dfrac{|x|}{2}dx=?$$
  • $$3$$
  • $$2.5$$
  • $$1.5$$
  • None of these
Evaluate : $$\displaystyle\int^1_0|2x-1|dx$$
  • $$2$$
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$0$$
Value of $$\displaystyle\int^3_2\dfrac{dx}{\sqrt{(1+x^3)}}$$ is?
  • Less than $$1$$
  • Greater than $$2$$
  • Lies between $$3$$ and $$4$$
  • None of these
The value of the definite integral $$\displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 5 x}{\sin x} d x$$ is
  • 0
  • $$\dfrac{\pi}{2}$$
  • $$\pi$$
  • $$2 \pi$$
Evaluate : $$\displaystyle\int^1_{-2}|2x+1|dx$$
  • $$\dfrac{5}{2}$$
  • $$\dfrac{7}{2}$$
  • $$\dfrac{9}{2}$$
  • $$4$$
The value of the definite integral $$\int_{2}^{4}(x(3-x)(4+x)(6-x)$$ $$(10-x)+\sin x) d x$$ equals
  • $$\cos 2+\cos 4$$
  • $$\cos 2-\cos 4$$
  • $$\sin 2+\sin 4$$
  • $$\sin 2-\sin 4$$
Let $$f : R \rightarrow R$$ be a function as $$f(x) = (x - 1)(x + 2)(x - 3)(x - 6) - 100$$. If $$g(x)$$ is a polynomial of degree $$\leq 3$$ such that $$\displaystyle \int \frac{g(x)}{f(x)} dx$$ does not contain any logarithm function and $$g(-2) = 10$$. Then

$$\displaystyle \int \frac{g(x)}{f(x)} dx$$, equals
  • $$\tan^{-1} \left ( \frac{x - 2}{2}
    \right ) + c$$
  • $$\tan^{-1} \left ( \frac{x - 1}{1}
    \right ) + c$$
  • $$\tan^{-1} (x) + c$$
  • None of these
If $$\displaystyle \int_{-2}^{-1} (ax^2-5)dx $$ and $$5+\displaystyle \int_{1}^{2} (bx+c)dx=0, $$ then 
  • $$ax^2-bx+c=0 $$ has atleast one root in (1,2)
  • $$ax^2-bx+c=0 $$ has atleast one root in (-2,-1)
  • $$ax^2+bx+c=0 $$ has atleast one root in (-2,-1)
  • None of the above
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers