Processing math: 7%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 7 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Definite Integrals
Quiz 7
∫
π
/
4
0
log
(
1
+
tan
2
θ
+
2
tan
θ
)
d
θ
=
Report Question
0%
π
log
2
0%
(
π
log
2
)
/
2
0%
(
π
log
2
)
/
4
0%
log
2
If
∫
2
x
√
1
−
4
x
d
x
=
K
sin
−
1
(
2
x
)
+
C
,
then K is equal to
Report Question
0%
ℓ
n
2
0%
1
2
ℓ
n
2
0%
1
2
0%
1
ℓ
n
2
Explanation
I
=
∫
2
x
√
1
−
4
x
d
x
Let
2
x
=
z
⇒
2
x
log
2
d
x
=
d
z
⇒
I
=
∫
1
log
2
√
1
−
z
2
d
z
=
1
log
2
⋅
sin
−
1
z
+
c
=
1
log
2
⋅
sin
−
1
(
e
x
)
+
c
=
k
sin
−
1
(
2
x
)
+
c
then
k
=
1
log
2
.
The value of the defined integral
∫
π
/
2
0
(
sin
x
+
cos
x
)
√
e
x
sin
x
d
x
equals
Report Question
0%
2
√
e
π
/
2
0%
√
e
π
/
2
0%
2
√
e
π
/
2
.
cos
1
0%
1
2
e
π
/
4
Evaluate
∫
π
/
2
0
cos
x
(
1
+
sin
2
x
)
d
x
Report Question
0%
π
2
0%
π
4
0%
π
0%
None of these
Explanation
Let
I
=
∫
π
/
2
0
cos
x
(
1
+
sin
2
x
)
d
x
Put
sin
x
=
t
and
cos
x
d
x
=
d
t
.
[
x
=
0
⇒
t
=
0
]
and
[
x
=
π
2
⇒
t
=
1
]
.
∴
=[\tan^{-1}t]^1_0
.......
\displaystyle \int \dfrac {dx}{ {x^2+a^2} }=\tan^{-1}\dfrac xa+C
=\dfrac{\pi}{4}-0\\
.
=\dfrac{\pi}{4}
.
Evaluate
\displaystyle\int^{\sqrt{8}}_{\sqrt{3}}x\sqrt{1+x^2}dx
Report Question
0%
\dfrac{19}{3}
0%
\dfrac{19}{6}
0%
\dfrac{38}{3}
0%
\dfrac{9}{4}
Evaluate
\displaystyle\int^{\pi/2}_0\cos^3xdx
Report Question
0%
1
0%
\dfrac{3}{4}
0%
\dfrac{2}{3}
0%
None of these
Evaluate :
\displaystyle\int^1_0\sqrt{\dfrac{1-x}{1+x}}dx
Report Question
0%
\dfrac{\pi}{2}
0%
\left(\dfrac{\pi}{2}-1\right)
0%
\left(\dfrac{\pi}{2}+1\right)
0%
None of these
Evaluate:
\int _{ 1/3 }^{ 1 }{ \cfrac { { \left( x-{ x }^{ 3 } \right) }^{ 1/3 } }{ { x }^{ 4 } } } dx=
Report Question
0%
3
0%
0
0%
6
0%
4
Explanation
I=\displaystyle\int^1_{1/3}\dfrac{x^{1/3}(1-x^2)^{1/3}}{x^4}dx
Let
x=\sin\theta, dx=\cos\theta d\theta
I=\displaystyle\int^{\pi/2}_{\sin^{-1}1/3}\dfrac{(\sin\theta)^{1/3}(\cos^{2/3}\theta)}{\sin^4\theta}\times \cos\theta d\theta
=\displaystyle\int \dfrac{\cos^{5/3}\theta}{\sin^{11/3}\theta}d\theta \times \dfrac{\cos^2\theta}{\cos^2\theta}
=\displaystyle\int \dfrac{\cos^{11/3}\theta}{\sin^{11/3}\theta\cos^2\theta}d\theta
=\displaystyle\cot^{11/3}\theta .\sec^2\theta d\theta
Let
\tan\theta =t
\Rightarrow \sec^2\theta d\theta =dt
=\displaystyle\int t^{-11/3}dt
=\dfrac{t^{-8/3}}{(-8/3)}=\dfrac{-3}{8}t^{-8/3}
=\left.\dfrac{-3}{8}(\tan\theta)^{-8/3}\right|^{\pi/2}_{\sin^{-11}1/3}
As
\sin^{-11/3}=\tan^{-1}\dfrac{1}{2\sqrt{2}}
\Rightarrow I=\dfrac{-3}{8}\left(\dfrac{1}{(\infty)^{8/3}}-\left(\dfrac{1}{2\sqrt{2}}\right)^{-8/3}\right)
=\dfrac{3}{8}\times (2\sqrt{2})^{8/3}=\dfrac{3}{8}(2^{3/2})^{8/3}
=\dfrac{3}{8}\times 16=6\Rightarrow (C)
.
Evaluate
\displaystyle \int _ { 0 } ^ { a } \dfrac { x d x } { \sqrt { a ^ { 2 } + x ^ { 2 } } }
Report Question
0%
a ( \sqrt { 2 } - 1 )
0%
a ( 1 - \sqrt { 2 } )
0%
a ( 1 + \sqrt { 2 } )
0%
2 a \sqrt { 3 }
Explanation
\displaystyle \int _{ 0 }^{ a }{ \cfrac { xdx }{ \sqrt { { a }^{ 2 }+{ x }^{ 2 } } } }
Let
t=\left( { a }^{ 2 }+{ x }^{ 2 } \right) \Rightarrow dt=2xdx
when
x=0,t={ a }^{ 2 }\quad
when
x=a,t=2{ a }^{ 2 }
\displaystyle =\cfrac { 1 }{ 2 } \int _{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }{ \cfrac { 2xdx }{ \sqrt { { a }^{ 2 }+{ x }^{ 2 } } } } =\cfrac { 1 }{ 2 } \int _{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }{ \cfrac { dt }{ \sqrt { t } } } =\cfrac { 1 }{ 2 } \int _{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }{ { t }^{ -1/2 }dt }
=\cfrac { 1 }{ 2 } \quad { \left[ \cfrac { { t }^{ -1/2+1 } }{ -\cfrac { 1 }{ 2 } +1 } \right] }_{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }=\cfrac { 1 }{ 2 } \quad { \left[ \cfrac { \sqrt { t } }{ \cfrac { 1 }{ 2 } } \right] }_{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }=\cfrac { 2 }{ 2 } \left[ \sqrt { 2{ a }^{ 2 } } -\sqrt { { a }^{ 2 } } \right]
=a\left( \sqrt { 2 } -1 \right)
The correct evaluation of
\displaystyle \int _ { 0 } ^ { \pi / 2 } \sin x \sin 2 x
is
Report Question
0%
\dfrac { 4 } { 3 }
0%
\dfrac { 1 } { 3 }
0%
\dfrac { 3 } { 4 }
0%
\dfrac { 2 } { 3 }
Explanation
I=\displaystyle \int_0^{\pi/2} \sin x \sin 2x \, dx
I= \displaystyle \int_0^{\pi/2} 2 \sin^2 x \, \cos x\ dx
u = \sin x \Rightarrow du = \cos x\ dx
= \left.\begin{matrix}\displaystyle \int_0^1 2u^2 du = 2 \dfrac{u^3}{3}\end{matrix}\right|^1_0= \dfrac{2}{3}
\int { { e }^{ x^{ 3 } }+{ x }^{ 2-1 }(3{ x }^{ 4 }+{ 2x }^{ 3 }+{ 2x }^{ 2 }\quad x=h(x)+c }
then the value of
h(1)h(-1)
.
Report Question
0%
1
0%
-1
0%
2
0%
-2
\int _{ 0 }^{ \pi }{ \cfrac { { x }^{ 2 } }{ { \left( 1+sinx \right) }^{ 2 } } } dx
equals
Report Question
0%
\pi (\pi -2)
0%
\pi ^2 (\pi -2)
0%
\pi (2-\pi )
0%
none of these
The value of the integral
\displaystyle \int_{-\pi/2}^{\pi/2} \left(x^{2}+\log \dfrac{\pi-x}{\pi+x}\right) \cos x dx
is
Report Question
0%
0
0%
\dfrac{\pi^{2}}{2}-4
0%
\dfrac{\pi^{2}}{2}+4
0%
\dfrac{\pi^{2}}{2}
Explanation
I=\displaystyle \int_{-\pi/2}^{\pi/2}\left[x^2+log\left( \dfrac{\pi-x}{\pi+x}\right)\right]cosxdx
As,
\displaystyle \int_{-a}^{a}f(x)dx=0,
when
f(-x)=-f(x)
\therefore I=\displaystyle \int_{-\pi/2}^{\pi/2}x^2cosxdx+0=2\displaystyle \int_{0}^{\pi/2}(x^2cosx)dx
=2\left\{ (x^2sinx)_{0}^{\pi/2}-\displaystyle \int_{0}^{\pi/2}(x^3cosx) \right\}
2\left[ \dfrac{\pi^2}{4}-2\left\{(-xcosx)_{0}^{\pi/2}-\displaystyle \int_{0}^{\pi/2}1.(-cosx)dx \right\}\right]
=2\left[ \dfrac{\pi^2}{4}-2(sinx)_{0}^{\pi/2}\right]=2\left[\dfrac{\pi^2}{4}-2\right]=\left( \dfrac{\pi^2}{2}-4\right)
Let
\theta
be the angle between the lines
{ L }_{ { 1 } }:\left[ \begin{array}{l} { { x }=2{ t }+{ 1 } } \\ { { y }={ t }+{ 1 } } \\ { { z }=3{ t }+{ 1 } } \end{array} \right.
and
{ L }_{ { 2 } }:\left[ \begin{array}{l} { { x }=3{ s }+2 } \\ { { y }=6{ s }-1 } \\ { { z }=4 } \end{array} \right.
where
s , t \in { R }.
Then the value of
\int _ { 0 } ^ { \theta } \dfrac { 1 } { 1 + \tan x } d x =
Report Question
0%
\pi / 6
0%
\pi / 4
0%
\pi / 2
0%
\pi / 3
Let
{ I }_{ 1 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right) }^{ 100 }dx }
and
{ I }_{ 2 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right) }^{ 101 }dx }
, then
\dfrac { { I }_{ 1 } }{ { I }_{ 2 } } =
Report Question
0%
\dfrac {5051}{5050}
0%
\dfrac {5051}{5049}
0%
\dfrac {51}{50}
0%
\dfrac {101}{100}
\displaystyle\int _{ -9 }^{ 9 }{ \log { \left( x+\sqrt { { x }^{ 2 }+1 } \right) } dx }
equal
Report Question
0%
2\log (9^{2}+1)
0%
2\log (\sqrt{9^{2}+1}-9)
0%
0
0%
2\log (9+\sqrt{9^{2}+1})
If
\displaystyle \int_{0}^{\dfrac{\pi}{3}}\dfrac{\tan \theta}{\sqrt{2k \sec \theta}}d\theta=1-\dfrac{1}{\sqrt{2}},(k>0),
then the value of k is :
Report Question
0%
2
0%
\dfrac{1}{2}
0%
4
0%
1
Explanation
LHS= \dfrac{1}{\sqrt{2k}}\displaystyle\int_0^{\dfrac{\pi}{3}} \dfrac{\tan \theta}{\sqrt{\sec \theta}}d\theta
=\dfrac{1}{\sqrt{2k}}\displaystyle \int_0^{\dfrac{\pi}{3}}\dfrac{\sin \theta}{\sqrt{\cos \theta}}d\theta
=-\dfrac{1}{\sqrt{2k}}|2\sqrt{\cos \theta}|_0^{\dfrac{\pi}{3}}
=-\dfrac{\sqrt{2}}{\sqrt{k}}\left(\dfrac{1}{\sqrt{2}}-1\right)
=\dfrac{\sqrt 2}{\sqrt k}\left(1-\dfrac{1}{\sqrt{2}}\right)
\because
it is given that
RHS = 1-\dfrac{1}{\sqrt{2}}
\therefore
by comparing we get
k=2
The value of
\displaystyle\int^{2\pi}_{0}\dfrac{x\sin^8x}{\sin^8x+\cos^8x}dx
is equal to?
Report Question
0%
2\pi
0%
\pi^2
0%
2\pi^2
0%
4\pi
Explanation
Let
I = \displaystyle \int_0^{2 \pi} \dfrac{x \sin^8 x}{\sin^8 x + \cos^8 x}
___(1)
I = \displaystyle \int_0^{2 \pi} \dfrac{(2\pi - x) \sin^8 (2\pi - x)}{\sin^8 (2 \pi - x) + \cos^8 (2 \pi - x)}
I = \displaystyle \int_0^{2 \pi} \dfrac{(2\pi - x) \sin^8 x}{\sin^8 x + \cos^8 x}
___(2)
Add (1) + (2) we get,
2I = \displaystyle \int_0^{2 \pi} \dfrac{2 \pi \sin^8 x}{\sin^8 x + \cos^8 x}
2I = 2 \times 2 \pi \displaystyle \int_0^{\pi} \dfrac{\sin^8 x}{\sin^8 x + \cos^8 x}
I = 2 \pi \displaystyle \int_0^{\pi} \dfrac{\sin^8 x}{\sin^8 x + \cos^8 x} dx
I = 4 \pi \displaystyle \int_0^{\pi/2} \dfrac{\sin^8 x}{\sin^8 x + \cos^8 x} dx
__(3)
I = 4\pi \displaystyle \int_0^{\pi/2} \dfrac{\sin^8 \left(\dfrac{\pi}{2} - x \right)}{\sin^8 \left(\dfrac{\pi}{2} - x \right) + \cos^8 \left(\dfrac{\pi}{2} - x \right)}
I = 4 \pi \displaystyle \int_0^{\pi/2} \dfrac{\cos^8 (x)}{\sin^8 x + \cos^8 x}
__(4)
add (3) + (4) we get
I = 2 \pi \displaystyle \int_0^{\pi/2} \dfrac{\sin^8 x + \cos^8 x}{\sin^8 x + \cos^8 x} dx = 2\pi \displaystyle \int_0^{\pi/2} 1 dx = 2 \pi \times \dfrac{\pi}{2} = \pi^2
If
f(a-x)=-f(x)
, then
\displaystyle \int_{0}^{a}f(x)dx=0
.
Report Question
0%
True
0%
False
Explanation
\displaystyle\int_{-a}^{a}{f\left(x\right)dx}=\displaystyle\int_{-a}^{0}{f\left(x\right)dx}+\displaystyle\int_{0}^{a}{f\left(x\right)dx}
\displaystyle\int_{a}^{a}{f\left(x\right)dx}=I+\displaystyle\int_{0}^{a}{f\left(x\right)dx}
Now
I=\displaystyle\int_{-a}^{0}{f\left(x\right)dx}
Put
x=-t
\Rightarrow dx=-dt
When
x=-a,\,t=a
and when
x=0,\,t=0
I=\displaystyle\int_{a}^{0}{f\left(-t\right)\left(-dt\right)}
=-\displaystyle\int_{a}^{0}{f\left(-t\right)dt}
=\displaystyle\int_{0}^{a}{f\left(-t\right)dt}...........
since
\displaystyle\int_{a}^{b}{f\left(x\right)dx}=-\displaystyle\int_{b}^{a}{f\left(x\right)dx}
=\displaystyle\int_{0}^{a}{f\left(-x\right)dt}..........
since
\displaystyle\int_{a}^{b}{f\left(x\right)dx}=-\displaystyle\int_{b}^{a}{f\left(t\right)dt}
Thus,
\displaystyle\int_{-a}^{a}{f\left(x\right)dx}=\displaystyle\int_{0}^{a}{f\left(-x\right)dx}+\displaystyle\int_{0}^{a}{f\left(x\right)dx}
=\displaystyle\int_{0}^{a}{\left[f\left(-x\right)+f\left(x\right)\right]dx}
=2\displaystyle\int_{0}^{a}{f\left(x\right)dx}
If
f\left(x\right)
is an odd function, then
f\left(-x\right)=-f\left(x\right)
\Rightarrow \displaystyle\int_{-a}^{a}{f\left(x\right)dx}=\displaystyle\int_{0}^{a}{\left[-f\left(x\right)+f\left(x\right)\right]dx}=0
Hence proved.
Thus, the given statement is true.
\int _{ 0 }^{ 400\pi }{ \sqrt { 1-\cos { 2x } } }
Report Question
0%
200\sqrt 2
0%
400\sqrt 2
0%
800\sqrt 2
0%
none
Explanation
I=\int _{ 0 }^{ 400\pi }{ \sqrt { 1-\cos x } dx } \\ =400\int _{ 0 }^{ \pi }{ \sqrt { 1-\cos 2x } dx } \\ =800\int _{ 0 }^{ \pi }{ \sqrt { 2 } \sqrt { { { \sin }^{ 2 } }x } dx } \\ =800\sqrt { 2 } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sin xdx } \\ =800\sqrt { 2 } \left[ { \cos x } \right] _{ \frac { \pi }{ 2 } }^{ 0 } \\ =800\sqrt { 2 }
\\ Hence,\, the\, option\, C\, is\, the\, correct\, answer.
\displaystyle \int_{0}^{1}\sin^{-1}x dx=\dfrac {\pi}{2}-1
Report Question
0%
True
0%
False
Let a function
f:R\rightarrow R
be defined as
f\left( x \right) =x+\sin { x }
. The value of
\int _{ 0 }^{ 2\pi }{ { f }^{ -1 }(x) } dx
will
Report Question
0%
2{ \pi }^{ 2 }
0%
2{ \pi }^{ 2 }-2
0%
2{ \pi }^{ 2 }+2
0%
{ \pi }^{ 2 }
Explanation
We have
f(x) = x + \sin x
Let
I = \displaystyle \int_0^{2\pi} f^{-1} (x) dx
let
x = f(t) \Rightarrow dx = f'(t) dt
I = \displaystyle \int_{f^{-1} (0)}^{f^{-1} (2 \pi)} t . f'(t) dt = \int_0^{2\pi} t. f'(t) dt
= t f(t) \displaystyle |_0^{2\pi} - \int_0^{2\pi} f(t) dt
= 2 \pi . f(2 \pi) - \displaystyle \int_0^{2\pi} t + \sin t
4 \pi^2 - \dfrac{t^2}{2} \displaystyle |_0^{2\pi} + \cos t |_0^{2\pi}
= 4 \pi^2 - 2 \pi^2 + 0
= 2 \pi^2
The value of
\displaystyle\int\limits_{0}^{\frac{\pi}{4}} \tan^2 \theta\ d\theta=
Report Question
0%
\dfrac{\pi}{4}-1
0%
\dfrac{\pi}{4}
0%
1-\dfrac{\pi}{4}
0%
none of these
Explanation
Now,
\displaystyle\int\limits_{0}^{\frac{\pi}{4}} \tan^2 \theta\ d\theta
=\displaystyle\int\limits_{0}^{\frac{\pi}{4}} (\sec^2 \theta-1)\ d\theta
[ Since
\sec^2 \theta-\tan^2 \theta=1
]
=\left[\tan \theta-\theta\right]_0^{\frac{\pi}{4}}
=1-\dfrac{\pi}{4}
.
\int _{ 0 }^{ 1 }{ \frac { x }{ { \left( { x }^{ 2 }+1 \right) }^{ \frac { 3 }{ 2 } } } dx } =........
Report Question
0%
\dfrac{1}{3}
0%
\dfrac{2}{3}
0%
\dfrac{3}{2}
0%
1-\dfrac{1}{\sqrt{2}}
Explanation
\displaystyle\int _{ 0 }^{ 1 }{ \dfrac { x }{ { \left( { x }^{ 2 }+1 \right) }^{ \frac { 3 }{ 2 } } } dx } =\dfrac{1}{2}\int ^{1}_0 \dfrac{d(x^2+1)}{(x^2+1)^{3/2}}=\dfrac{1}{2}\bigg[\dfrac{(x^2+1)^{-3/2+1}}{-3/2+1}\bigg]^{1}_{0}=\bigg[\dfrac{1}{2}\times \dfrac{(x^2+1)^{-1/2}}{-1/2}\bigg]^{1}_{0}=-[\dfrac{1}{\sqrt{2}}-1\bigg]=1-\dfrac{1}{\sqrt{2}}
\displaystyle\int^{1/2}_0\dfrac{dx}{(1+x^2)\sqrt{1-x^2}}
is equal to?
Report Question
0%
\dfrac{1}{\sqrt{2}}\tan^{-1}\sqrt{\dfrac{2}{3}}
0%
\dfrac{2}{\sqrt{2}}\tan^{-1}\left(\dfrac{3}{\sqrt{2}}\right)
0%
\dfrac{\sqrt{2}}{2}\tan^{-1}\left(\dfrac{3}{2}\right)
0%
\dfrac{\sqrt{2}}{2}\tan^{-1}\left(\dfrac{\sqrt{3}}{2}\right)
Explanation
Let
x=\sin\theta
dx=\cos \theta d\theta
\displaystyle\int^{\pi/6}_0\dfrac{\cos\theta d\theta}{(1+\sin^2\theta)\cos \theta}=\displaystyle\int^{\pi/6}_0\dfrac{\sec^2\theta}{1+2\tan^2\theta}=d\theta
.
Multiply numeration and denomination by
\sec^2\theta
=\dfrac{1}{\sqrt{2}}\tan^{-1}(\sqrt{2}\tan\theta)^{\dfrac{\pi}{6}}_{0}
=\dfrac{1}{\sqrt{2}}\tan^{-1}\left(\sqrt{\dfrac{2}{3}}\right)
.
\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } } } }
is equal to
Report Question
0%
\dfrac { \sqrt { e } }{ 2 } \left( \sqrt { 3 } +1 \right)
0%
\dfrac { \sqrt { 3e } }{ 2 }
0%
\sqrt { 3e }
0%
\sqrt { \dfrac { e }{ 3 } }
\int _{ 1 }^{ 3} \dfrac{4x}{x^2+1} \, dx
Report Question
0%
\log { 5 }
0%
\cfrac { 1 }{ 2 } \log { 5 }
0%
\log { 25 }
0%
\log { 100 }
Explanation
\int _{ 1 }^{ 3 }{ \left( \cfrac { 4x }{ { 1+x }^{ 2 } } \right) } dx
substitute
x^2+1=t
x=1
then
t=2
x=3
then
t=10
\int_2^{10}\dfrac2tdt
=2{ \left[ \ln { \left( { 1+x }^{ 2 } \right) } \right] }_{ 1 }^{ 3 }
=2\left[ \ln { 10 } -\ln { 2 } \right]
=\ln { 25 }
If
\int _{ log2 }^{ x }{ \dfrac { dx }{ \sqrt { { e }^{ x }-1 } } } =\dfrac { \pi }{ 6 } ,
then x is equal to _________.
Report Question
0%
4
0%
in 8
0%
in 4
0%
None of these
\displaystyle\int^1_0\dfrac{dx}{e^x+e^{-x}}
is equal to?
Report Question
0%
\dfrac{\pi}{4}-\tan^{-1}(e)
0%
\tan^{-1}(e)-\dfrac{\pi}{4}
0%
\tan^{-1}(e)+\dfrac{\pi}{4}
0%
\tan^{-1}(e)
Explanation
\displaystyle\int^1_0\dfrac{dx}{e^x+e^{-1}}=\displaystyle\int^1_0\dfrac{e^x}{(e^x)^2+1}dx
Put
e^x=t\Rightarrow e^x dx=dt
x\rightarrow 0\Rightarrow t\rightarrow e^0=1
x\rightarrow 1\Rightarrow t\rightarrow e^1=e
\displaystyle \int^e_1 \dfrac{1}{1+t^2}dt=\tan^{-1}t+c
=(\tan^{-1}(e^x))^1_0+c=\tan^{-1}(e)-\dfrac{\pi}{4}
.
If
\displaystyle\int^{\dfrac{\pi}{2}}_0\dfrac{\cot x}{\cot x+cosec x}dx=m(\pi +n)
, then
mn
is equal to?
Report Question
0%
-1
0%
1
0%
\dfrac{1}{2}
0%
-\dfrac{1}{2}
Explanation
\displaystyle\int^{\pi /2}_0\dfrac{\cot xdx}{\cot x+cosec x}
\displaystyle\int^{\pi /2}_0\dfrac{\cos x}{\cos x+1}=\displaystyle\int \dfrac{2\cos^2\dfrac{x}{2}-1}{2\cos^2\dfrac{x}{2}}
\displaystyle\int^{\pi/2}_0\left(1-\dfrac{1}{2}\sec^2\dfrac{x}{2}\right)dx
\left[x-\tan \dfrac{x}{2}\right]^{\dfrac{\pi}{2}}_0
\Rightarrow
\dfrac{1}{2}[\pi -2]
\Rightarrow
m=\dfrac{1}{2}, n=-2
mn=-1
.
Evaluate :
\displaystyle\int^1_0\dfrac{dx}{(1+x+x^2)}
Report Question
0%
\dfrac{\pi}{\sqrt{3}}
0%
\dfrac{\pi}{3}
0%
\dfrac{\pi}{3\sqrt{3}}
0%
None of these
Evaluate
\displaystyle\int^{\pi/2}_0e^x\left(\dfrac{1+\sin x}{1+\cos x}\right)dx
Report Question
0%
0
0%
\dfrac{\pi}{4}
0%
e^{\pi/2}
0%
(e^{\pi/2}-1)
Explanation
Let
I=\displaystyle\int^{\pi/2}_0e^x\left(\dfrac{1+\sin x}{1+\cos x}\right)dx
=\displaystyle\int^{\pi/2}_0e^x\left\{\dfrac{1}{(1+\cos x)}+\dfrac{\sin x}{(1+\cos x)}\right\}dx
=\displaystyle\int^{\pi/2}_0e^x\left\{\dfrac{1}{2\cos^2(x/2)}+\dfrac{2\sin(x/2)\cos (x/2)}{2\cos^2(x/2)}\right\}dx
=\displaystyle\int^{\pi/2}_0e^x\left\{\tan\dfrac{x}{2}+\dfrac{1}{2}\sec^2\dfrac{x}{2}\right\}dx
=\left[e^x\tan \dfrac{x}{2}\right]^{\pi/2}_0=e^{\pi/2}
.
Evaluate :
\displaystyle\int^{\sqrt{2}}_0\sqrt{2-x^2}dx
Report Question
0%
\pi
0%
2\pi
0%
\dfrac{\pi}{2}
0%
None of these
Evaluate :
\displaystyle\int^1_0\dfrac{(1-x)}{(1+x)}dx
Report Question
0%
(\log 2+1)
0%
(\log 2-1)
0%
(2 \log 2-1)
0%
(2 \log 2+1)
Evaluate :
\displaystyle\int^9_0\dfrac{dx}{(1+\sqrt{x})}
Report Question
0%
(3-2 log 2)
0%
(3+2 log 2)
0%
(6-2 log 4)
0%
(6+2 log 4)
Evaluate :
\displaystyle\int^2_{-2}|x|dx
Report Question
0%
4
0%
3.5
0%
2
0%
0
Evaluate
\displaystyle\int^{1}_0\dfrac{(1-x)}{(1+x)}dx
Report Question
0%
\dfrac{1}{2}log 2
0%
(2log 2+1)
0%
(2log 2-1)
0%
\left(\dfrac{1}{2}log 2-1\right)
Evaluate
\displaystyle\int^{\pi/6}_0\cos x\cos 2xdx
Report Question
0%
\dfrac{1}{4}
0%
\dfrac{5}{12}
0%
\dfrac{1}{3}
0%
\dfrac{7}{12}
The value of
\displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx
is?
Report Question
0%
50\sqrt{2}
0%
100\sqrt{2}
0%
150\sqrt{2}
0%
200\sqrt{2}
Evaluate :
\displaystyle\int^2_1|x^2-3x+2|dx
Report Question
0%
\dfrac{-1}{6}
0%
\dfrac{1}{6}
0%
\dfrac{1}{3}
0%
\dfrac{2}{3}
Given
I_{m}=\displaystyle \int_{1}^{e}(\log x)^{m} d x .
If
\dfrac{I_{m}}{K}+\dfrac{I_{m-2}}{L}=e,
then the values of
K
and
L
are
Report Question
0%
\dfrac{1}{1-m}, \dfrac{1}{m}
0%
(1-m), \dfrac{1}{m}
0%
\dfrac{1}{1-m}, \dfrac{m(m-2)}{m-1}
0%
\dfrac{m}{m-1}, m-2
Explanation
I_{m}= \displaystyle \int_{1}^{e}(\log x)^{m} d x \\
\therefore I_{m}=\left[x(\log x)^{m}\right]_{1}^{e}-\int_{1}^{e} x \dfrac{m(\log x)^{m-1}}{x} d x \text { (integrating by parts) }
\Rightarrow \dot{I}_{m}=e-m \displaystyle \int_{1}^{e}(\log x)^{m-1} d x=e-m I_{m-1}\\
Replacing
m
by
m-1\\
I_{m-1}=e-(m-1) I_{m-2}\\
From equations
(1)
and
(2),
we have
I_{m}=e-m\left[e-(m-1) I_{m-2}\right]\\
\Rightarrow I_{m}-m(m-1) I_{m-1}=e(1-m) \\
\Rightarrow \dfrac{I_{m}}{1-m}+m I_{m-2}=e \\
\Rightarrow K=1-m \text { and } L=\dfrac{1}{m}
\displaystyle\int^a_{-a}x|x|dx=?
Report Question
0%
0
0%
2a
0%
\dfrac{2a^3}{3}
0%
None of these
Explanation
|x|=-x,x<0
x,x>0
I=\displaystyle\int^0_{-a}x(-x)dx+\displaystyle\int^a_0x\cdot xdx
=\displaystyle\int^0_{-a}-x^2dx+\displaystyle\int^a_0x^2dx
=\left[\dfrac{-x^3}{3}\right]^0_{-a}+\left[\dfrac{x^3}{3}\right]^a_0=+\dfrac{1}{3}(-a)^3+\dfrac{a^3}{3}=0
.
\displaystyle\int^1_{-2}\dfrac{|x|}{2}dx=?
Report Question
0%
3
0%
2.5
0%
1.5
0%
None of these
Explanation
|x|=-x,x<0
x,x>0
I=\displaystyle\int^0_{-2}\dfrac{-x}{x}dx+\displaystyle\int^1_0\dfrac{x}{x}dx=\displaystyle\int^0_{-2}-dx+\displaystyle\int^1_0dx=[-x]^0_{-2}+[x]^1_0=(-2+1)=-1
.
Evaluate :
\displaystyle\int^1_0|2x-1|dx
Report Question
0%
2
0%
\dfrac{1}{2}
0%
1
0%
0
Value of
\displaystyle\int^3_2\dfrac{dx}{\sqrt{(1+x^3)}}
is?
Report Question
0%
Less than
1
0%
Greater than
2
0%
Lies between
3
and
4
0%
None of these
Explanation
Given,
\int_{2}^{3} \dfrac{dx}{\sqrt{1+x^3}}
Let us consider the function
f(x) = \int_{2}^{3} \dfrac{dx}{\sqrt{1+x^3}}
according to the question putting the lower and upper limit we get,
f(2) = \dfrac{1}{\sqrt{1+2^3}} = \dfrac{1}{3}
f(3) = \dfrac{1}{\sqrt{1+3^3}} = \dfrac{1}{\sqrt{28}}
\therefore \dfrac{1}{3} > \dfrac{1}{\sqrt{28}}
we conclude that the Larger integrating value lies in the point 2
\therefore \dfrac{1}{\sqrt{28}} < f(x) < \dfrac{1}{3}
Since, m < f(x) < M
\Rightarrow \int m dx < \int f(x) dx < \int M dx \, \, \, [ \, \forall \, m , M \in \mathbb{R}
and be the lower and upper limit of the f(n) ]
we can conclude that,
\int_2^3 f(x) dx < \dfrac{1}{3}
Therefore the value is less than 1. (Ans)
The value of the definite integral
\displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 5 x}{\sin x} d x
is
Report Question
0%
0
0%
\dfrac{\pi}{2}
0%
\pi
0%
2 \pi
Explanation
\sin n x-\sin (n-2) x=2 \cos (n-1) x \sin x\\
\Rightarrow \displaystyle \int \dfrac{\sin n x}{\sin x} d x=\int 2 \cos (n-1) d x+\int \dfrac{\sin (n-2) x}{\sin x} d x\\
\therefore \displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 5 x}{\sin x} d x=\int_{0}^{\pi / 2} 2 \cos 4 x d x+\int_{0}^{\pi / 2} \dfrac{\sin 3 x}{\sin x} d x\\
=0+\displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 3 x}{\sin x} d x\\=\displaystyle\int_{0}^{\pi / 2} 3-4sin^2x\ \ d x=\displaystyle\int_{0}^{\pi / 2} 1+2cos2x\ \ d x=\dfrac{\pi}{2}
Evaluate :
\displaystyle\int^1_{-2}|2x+1|dx
Report Question
0%
\dfrac{5}{2}
0%
\dfrac{7}{2}
0%
\dfrac{9}{2}
0%
4
The value of the definite integral
\int_{2}^{4}(x(3-x)(4+x)(6-x)
(10-x)+\sin x) d x
equals
Report Question
0%
\cos 2+\cos 4
0%
\cos 2-\cos 4
0%
\sin 2+\sin 4
0%
\sin 2-\sin 4
Explanation
Let
\left.I=\int_{2}^{4}(x(3-x)(4+x)(6-x)(10-x)+\sin x) d x\right)
.........(i)
=\int_{2}^{4}((6-x)(3-(6-x))(4+(6-x))(6-(6-x))
..........
\because \int_{a}^b f(x) \ dx= \int _{a}^{b} f(a+b-x) \ dx
=\int_{2}^{4}((6-x)(x-3)(10-x) x(4+x)+\sin (6-x)) d x
.......... (ii)
Adding equations (1) and
(2),
we get
2 I=\int_{2}^{4}(\sin x+\sin (6-x)) d x \\
\quad=(-\cos x+\cos (6-x))_{2}^{4} \\
\quad=-\cos 4+\cos 2+\cos 2-\cos 4 \\
\quad=2(\cos 2-\cos 4) \\
\Rightarrow \quad I=\cos 2-\cos 4
Let
f : R \rightarrow R
be a function as
f(x) = (x - 1)(x + 2)(x - 3)(x - 6) - 100
. If
g(x)
is a polynomial of degree
\leq 3
such that
\displaystyle \int \frac{g(x)}{f(x)} dx
does not contain any logarithm function and
g(-2) = 10
. Then
\displaystyle \int \frac{g(x)}{f(x)} dx
, equals
Report Question
0%
\tan^{-1} \left ( \frac{x - 2}{2} \right ) + c
0%
\tan^{-1} \left ( \frac{x - 1}{1} \right ) + c
0%
\tan^{-1} (x) + c
0%
None of these
Explanation
Here,
f(x) = (x - 1)(x + 2)(x - 3)(x - 6) - 100
= (x^2 + 4x + 3) (x^2 - 4x - 12) - 100
= (x^2 - 4x)^2 - 9(x^2 - 4x) - 136
= (x^2 - 4x + 8)(x^2 - 4x + 17)
\displaystyle \int \frac{g(x)}{f(x)} = \frac{g(x)}{(x^2 - 4x - 17)(x^2 - 4x + 8)}
= \frac{Ax + B}{x^2 - 4x - 17} + \frac{Cx + D}{x^2 - 4x + 8}
Clearly,
A, B
and
C
must be zero.
\therefore \frac{g(x)}{(x^2 - 4x - 17)(x^2 - 4x + 8)} = \frac{D}{x^2 - 4x + 8}
\therefore
g(x) = D (x^2 - 4x - 17)
g(-2) = D (4 + 8 - 17) = -10
[given]
\Rightarrow
\frac{g(x)}{f(x)} = \frac{2 (x^2 - 4x - 17)}{(x^2 - 4x - 17)(x^2 - 4x + 8)} = \frac{2}{x^2 - 4x + 8}
\therefore
\displaystyle \int \frac{g(x)}{f(x)} dx = \displaystyle \int \frac{2}{x^2 - 4x + 8}dx = 2 \displaystyle \int \frac{dx}{(x - 2)^2 + (2)^2}
= 2. \frac{1}{2} \tan^{-1} \left ( \frac{x - 2}{2} \right ) + C = \tan^{-1} \left ( \frac{x - 2}{2} \right ) + C
If
\displaystyle \int_{-2}^{-1} (ax^2-5)dx
and
5+\displaystyle \int_{1}^{2} (bx+c)dx=0,
then
Report Question
0%
ax^2-bx+c=0
has atleast one root in (1,2)
0%
ax^2-bx+c=0
has atleast one root in (-2,-1)
0%
ax^2+bx+c=0
has atleast one root in (-2,-1)
0%
None of the above
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page