Processing math: 7%

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 7 - MCQExams.com

π/40log(1+tan2θ+2tanθ)dθ=
  • πlog2
  • (πlog2)/2
  • (πlog2)/4
  • log2
If 2x14xdx=Ksin1(2x)+C, then K is equal to 
  • n2
  • 12n2
  • 12
  • 1n2
The value of the defined integral π/20(sinx+cosx)exsinxdx equals
  • 2eπ/2
  • eπ/2
  • 2eπ/2.cos1
  • 12eπ/4
Evaluate π/20cosx(1+sin2x)dx
  • π2
  • π4
  • π
  • None of these
Evaluate \displaystyle\int^{\sqrt{8}}_{\sqrt{3}}x\sqrt{1+x^2}dx
  • \dfrac{19}{3}
  • \dfrac{19}{6}
  • \dfrac{38}{3}
  • \dfrac{9}{4}
Evaluate \displaystyle\int^{\pi/2}_0\cos^3xdx
  • 1
  • \dfrac{3}{4}
  • \dfrac{2}{3}
  • None of these
Evaluate : \displaystyle\int^1_0\sqrt{\dfrac{1-x}{1+x}}dx
  • \dfrac{\pi}{2}
  • \left(\dfrac{\pi}{2}-1\right)
  • \left(\dfrac{\pi}{2}+1\right)
  • None of these
Evaluate: \int _{ 1/3 }^{ 1 }{ \cfrac { { \left( x-{ x }^{ 3 } \right)  }^{ 1/3 } }{ { x }^{ 4 } }  } dx=
  • 3
  • 0
  • 6
  • 4
Evaluate\displaystyle \int _ { 0 } ^ { a } \dfrac { x d x } { \sqrt { a ^ { 2 } + x ^ { 2 } } }
  • a ( \sqrt { 2 } - 1 )
  • a ( 1 - \sqrt { 2 } )
  • a ( 1 + \sqrt { 2 } )
  • 2 a \sqrt { 3 }
The correct evaluation of \displaystyle \int _ { 0 } ^ { \pi / 2 } \sin x \sin 2 x is 
  • \dfrac { 4 } { 3 }
  • \dfrac { 1 } { 3 }
  • \dfrac { 3 } { 4 }
  • \dfrac { 2 } { 3 }
\int { { e }^{ x^{ 3 } }+{ x }^{ 2-1 }(3{ x }^{ 4 }+{ 2x }^{ 3 }+{ 2x }^{ 2 }\quad x=h(x)+c } then the value of h(1)h(-1).
  • 1
  • -1
  • 2
  • -2
\int _{ 0 }^{ \pi  }{ \cfrac { { x }^{ 2 } }{ { \left( 1+sinx \right)  }^{ 2 } }  } dx equals
  • \pi (\pi -2)
  • \pi ^2 (\pi -2)
  • \pi (2-\pi )
  • none of these
The value of the integral \displaystyle \int_{-\pi/2}^{\pi/2} \left(x^{2}+\log \dfrac{\pi-x}{\pi+x}\right) \cos x dx is 
  • 0
  • \dfrac{\pi^{2}}{2}-4
  • \dfrac{\pi^{2}}{2}+4
  • \dfrac{\pi^{2}}{2}
Let  \theta  be the angle between the lines  { L }_{ { 1 } }:\left[ \begin{array}{l} { { x }=2{ t }+{ 1 } } \\ { { y }={ t }+{ 1 } } \\ { { z }=3{ t }+{ 1 } } \end{array} \right.   and  { L }_{ { 2 } }:\left[ \begin{array}{l} { { x }=3{ s }+2 } \\ { { y }=6{ s }-1 } \\ { { z }=4 } \end{array} \right.   where  s , t \in  { R }.  Then the value of  \int _ { 0 } ^ { \theta } \dfrac { 1 } { 1 + \tan x } d x =
  • \pi / 6
  • \pi / 4
  • \pi / 2
  • \pi / 3
Let { I }_{ 1 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right)  }^{ 100 }dx } and { I }_{ 2 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right)  }^{ 101 }dx }, then \dfrac { { I }_{ 1 } }{ { I }_{ 2 } } =
  • \dfrac {5051}{5050}
  • \dfrac {5051}{5049}
  • \dfrac {51}{50}
  • \dfrac {101}{100}
\displaystyle\int _{ -9 }^{ 9 }{ \log { \left( x+\sqrt { { x }^{ 2 }+1 }  \right)  } dx } equal 
  • 2\log (9^{2}+1)
  • 2\log (\sqrt{9^{2}+1}-9)
  • 0
  • 2\log (9+\sqrt{9^{2}+1})
If \displaystyle \int_{0}^{\dfrac{\pi}{3}}\dfrac{\tan \theta}{\sqrt{2k \sec \theta}}d\theta=1-\dfrac{1}{\sqrt{2}},(k>0), then the value of k is :
  • 2
  • \dfrac{1}{2}
  • 4
  • 1
The value of \displaystyle\int^{2\pi}_{0}\dfrac{x\sin^8x}{\sin^8x+\cos^8x}dx is equal to?
  • 2\pi
  • \pi^2
  • 2\pi^2
  • 4\pi
If f(a-x)=-f(x), then \displaystyle \int_{0}^{a}f(x)dx=0.

  • True
  • False
\int _{ 0 }^{ 400\pi  }{ \sqrt { 1-\cos { 2x }  }  }
  • 200\sqrt 2
  • 400\sqrt 2
  • 800\sqrt 2
  • none
\displaystyle \int_{0}^{1}\sin^{-1}x dx=\dfrac {\pi}{2}-1
  • True
  • False
Let a function f:R\rightarrow R be defined as f\left( x \right) =x+\sin { x } . The value of \int _{ 0 }^{ 2\pi  }{ { f }^{ -1 }(x) } dx will
  • 2{ \pi }^{ 2 }
  • 2{ \pi }^{ 2 }-2
  • 2{ \pi }^{ 2 }+2
  • { \pi }^{ 2 }
The value of \displaystyle\int\limits_{0}^{\frac{\pi}{4}} \tan^2 \theta\  d\theta=
  • \dfrac{\pi}{4}-1
  • \dfrac{\pi}{4}
  • 1-\dfrac{\pi}{4}
  • none of these
\int _{ 0 }^{ 1 }{ \frac { x }{ { \left( { x }^{ 2 }+1 \right)  }^{ \frac { 3 }{ 2 }  } } dx } =........
  • \dfrac{1}{3}
  • \dfrac{2}{3}
  • \dfrac{3}{2}
  • 1-\dfrac{1}{\sqrt{2}}
\displaystyle\int^{1/2}_0\dfrac{dx}{(1+x^2)\sqrt{1-x^2}} is equal to?
  • \dfrac{1}{\sqrt{2}}\tan^{-1}\sqrt{\dfrac{2}{3}}
  • \dfrac{2}{\sqrt{2}}\tan^{-1}\left(\dfrac{3}{\sqrt{2}}\right)
  • \dfrac{\sqrt{2}}{2}\tan^{-1}\left(\dfrac{3}{2}\right)
  • \dfrac{\sqrt{2}}{2}\tan^{-1}\left(\dfrac{\sqrt{3}}{2}\right)
\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } }  }  } is equal to
  • \dfrac { \sqrt { e } }{ 2 } \left( \sqrt { 3 } +1 \right)
  • \dfrac { \sqrt { 3e } }{ 2 }
  • \sqrt { 3e }
  • \sqrt { \dfrac { e }{ 3 } }
\int _{ 1 }^{ 3} \dfrac{4x}{x^2+1} \, dx
  • \log { 5 }
  • \cfrac { 1 }{ 2 } \log { 5 }
  • \log { 25 }
  • \log { 100 }
If \int _{ log2 }^{ x }{ \dfrac { dx }{ \sqrt { { e }^{ x }-1 }  }  } =\dfrac { \pi  }{ 6 } ,then x is equal to _________.
  • 4
  • in 8
  • in 4
  • None of these
\displaystyle\int^1_0\dfrac{dx}{e^x+e^{-x}} is equal to?
  • \dfrac{\pi}{4}-\tan^{-1}(e)
  • \tan^{-1}(e)-\dfrac{\pi}{4}
  • \tan^{-1}(e)+\dfrac{\pi}{4}
  • \tan^{-1}(e)
If \displaystyle\int^{\dfrac{\pi}{2}}_0\dfrac{\cot x}{\cot x+cosec x}dx=m(\pi +n), then mn is equal to?
  • -1
  • 1
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
Evaluate : \displaystyle\int^1_0\dfrac{dx}{(1+x+x^2)}
  • \dfrac{\pi}{\sqrt{3}}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{3\sqrt{3}}
  • None of these
Evaluate\displaystyle\int^{\pi/2}_0e^x\left(\dfrac{1+\sin x}{1+\cos x}\right)dx
  • 0
  • \dfrac{\pi}{4}
  • e^{\pi/2}
  • (e^{\pi/2}-1)
Evaluate : \displaystyle\int^{\sqrt{2}}_0\sqrt{2-x^2}dx
  • \pi
  • 2\pi
  • \dfrac{\pi}{2}
  • None of these
Evaluate : \displaystyle\int^1_0\dfrac{(1-x)}{(1+x)}dx
  • (\log 2+1)
  • (\log 2-1)
  • (2 \log 2-1)
  • (2 \log 2+1)
Evaluate : \displaystyle\int^9_0\dfrac{dx}{(1+\sqrt{x})}
  • (3-2 log 2)
  • (3+2 log 2)
  • (6-2 log 4)
  • (6+2 log 4)
Evaluate : \displaystyle\int^2_{-2}|x|dx
  • 4
  • 3.5
  • 2
  • 0
Evaluate \displaystyle\int^{1}_0\dfrac{(1-x)}{(1+x)}dx
  • \dfrac{1}{2}log 2
  • (2log 2+1)
  • (2log 2-1)
  • \left(\dfrac{1}{2}log 2-1\right)
Evaluate \displaystyle\int^{\pi/6}_0\cos x\cos 2xdx
  • \dfrac{1}{4}
  • \dfrac{5}{12}
  • \dfrac{1}{3}
  • \dfrac{7}{12}
The value of \displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx is?
  • 50\sqrt{2}
  • 100\sqrt{2}
  • 150\sqrt{2}
  • 200\sqrt{2}
Evaluate : \displaystyle\int^2_1|x^2-3x+2|dx
  • \dfrac{-1}{6}
  • \dfrac{1}{6}
  • \dfrac{1}{3}
  • \dfrac{2}{3}
Given I_{m}=\displaystyle \int_{1}^{e}(\log x)^{m} d x . If \dfrac{I_{m}}{K}+\dfrac{I_{m-2}}{L}=e, then the values of K and L are
  • \dfrac{1}{1-m}, \dfrac{1}{m}
  • (1-m), \dfrac{1}{m}
  • \dfrac{1}{1-m}, \dfrac{m(m-2)}{m-1}
  • \dfrac{m}{m-1}, m-2
\displaystyle\int^a_{-a}x|x|dx=?
  • 0
  • 2a
  • \dfrac{2a^3}{3}
  • None of these
\displaystyle\int^1_{-2}\dfrac{|x|}{2}dx=?
  • 3
  • 2.5
  • 1.5
  • None of these
Evaluate : \displaystyle\int^1_0|2x-1|dx
  • 2
  • \dfrac{1}{2}
  • 1
  • 0
Value of \displaystyle\int^3_2\dfrac{dx}{\sqrt{(1+x^3)}} is?
  • Less than 1
  • Greater than 2
  • Lies between 3 and 4
  • None of these
The value of the definite integral \displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 5 x}{\sin x} d x is
  • 0
  • \dfrac{\pi}{2}
  • \pi
  • 2 \pi
Evaluate : \displaystyle\int^1_{-2}|2x+1|dx
  • \dfrac{5}{2}
  • \dfrac{7}{2}
  • \dfrac{9}{2}
  • 4
The value of the definite integral \int_{2}^{4}(x(3-x)(4+x)(6-x) (10-x)+\sin x) d x equals
  • \cos 2+\cos 4
  • \cos 2-\cos 4
  • \sin 2+\sin 4
  • \sin 2-\sin 4
Let f : R \rightarrow R be a function as f(x) = (x - 1)(x + 2)(x - 3)(x - 6) - 100. If g(x) is a polynomial of degree \leq 3 such that \displaystyle \int \frac{g(x)}{f(x)} dx does not contain any logarithm function and g(-2) = 10. Then

\displaystyle \int \frac{g(x)}{f(x)} dx, equals
  • \tan^{-1} \left ( \frac{x - 2}{2} \right ) + c
  • \tan^{-1} \left ( \frac{x - 1}{1} \right ) + c
  • \tan^{-1} (x) + c
  • None of these
If \displaystyle \int_{-2}^{-1} (ax^2-5)dx and 5+\displaystyle \int_{1}^{2} (bx+c)dx=0,  then 
  • ax^2-bx+c=0 has atleast one root in (1,2)
  • ax^2-bx+c=0 has atleast one root in (-2,-1)
  • ax^2+bx+c=0 has atleast one root in (-2,-1)
  • None of the above
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers