Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 12 Commerce Applied Mathematics Definite Integrals Quiz 8 - MCQExams.com

Given, f(x)=|0x2sinxcosx2sinxx2012x2cosx2x10|, then f(x)dx is equal to
  • x33x2sinx+sin2x+C
  • x33x2sinx+cos2x+C
  • x33x2cosx+cos2x+C
  • None of the above
Let f(x)=x1et2dt and h(x)=f(1+g(x)) where g(x) is defined for all x,g(x) exists for all x, and g(x)<0 for x>0. If h(1)=e and g(1)=1, then the possible values which g(1) can take 
  • 0
  • 1
  • 2
  • 4
If t0bxcos4xasin4xx2dx=asin4tt1, where 0<t<π4then the values of a,b are equal to
  • 14,1
  • 1,4
  • 2,2
  • 2,4
The value of \int_{a}^{b}(x-a)^{3}(b-x)^{4} d x is
  • \dfrac{(b-a)^{4}}{6^{4}}
  • \dfrac{(b-a)^{8}}{280}
  • \dfrac{(b-a)^{7}}{7^{3}}
  • None of these
the value of I_{n+2}-I_n is equal to 
  • n\pi
  • \pi
  • -\pi
  • 0
The value of the definite integral 
\displaystyle \int_{0}^{\infty} \dfrac{dx}{(1+x^a)(1+x^2)}(a>0) is
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{2}
  • {\pi}
  • Some function of a
If \displaystyle I_{n}=\int_{0}^{1} \dfrac{d x}{\left(1+x^{2}\right)^{n}}, where n \in N, which of the following statements hold good?
  • 2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}
  • I_{2}=\dfrac{\pi}{8}+\dfrac{1}{4}
  • I_{2}=\dfrac{\pi}{8}-\dfrac{1}{4}
  • I_{3}=\dfrac{3 \pi}{32}+\dfrac{1}{4}
Abscissae of point of intersection are in 
  • AP
  • GP
  • HP
  • None of these
The value of the definite integral \displaystyle \int_{0}^{\pi/2}sinx\space sin2x\space sin3xdx is equal to  
  • \dfrac{1}{3}
  • -\dfrac{2}{3}
  • -\dfrac{1}{3}
  • \dfrac{1}{6}
The value of
\int_{2}^{5} \dfrac {\sqrt x}{\sqrt {x} + \sqrt {7-x}} dx
is :
  • 3
  • 2
  • \dfrac {3}{2}
  • \dfrac {1}{2}
If A(x) = \int_{0}^{x} \theta ^2 d\theta
then value of A(3) will be :
  • 9
  • 27
  • 3
  • 81
\int_{a-c}^{b-c} f(x+c) dx is:
  • \int_{a}^{b} f(x+c) dx
  • \int_{a}^{b} f(x) dx
  • \int_{a-2c}^{b-2c} f(x) dx
  • \int_{a}^{b} f(x+2c) dx
\int_{0}^{log 5} \displaystyle \frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+3}  dx =
  • 3+ 2 \pi
  • 4 - \pi
  • 2 + \pi
  • \pi -4
If  \displaystyle I_n=\int_{0}^{\tfrac{\pi}{4}} \tan^nx\sec^2xdx, then  I_1,   I_2,  I_3.. are  in
  • A.P.
  • G.P.
  • H.P.
  • A.G.P.
Evaluate the integral
\displaystyle \int_{0}^{\pi/4}\frac{ {s}i {n}\theta+ {c} {o} {s}\theta}{9+16 {s}i {n}2\theta} \ {d}\theta
  • \displaystyle \frac{1}{20} \log 2 
  • \displaystyle \frac{1}{20} \log 3 
  • \log 3
  • \log 2
The value of the definite integral \displaystyle \int_{ 0 }^{\sqrt{{\ln (\displaystyle \frac{\pi}{2})}}}\cos(e^{x^{2}})2xe^{x^{2}} \:dx is:
  • 1
  • 1+ (\sin1)
  • 1- (\sin1)
  • (\sin1)-1
Evaluate: \displaystyle \int_{0}^{\pi}\frac{dx}{5+4\cos x}
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{3}
  • -\pi
\int ^{\pi /2}_{-\pi /2} cost . \sin(2t-\displaystyle \frac{\pi}{4})dt=
  • \displaystyle \frac{\sqrt{2}}{3}
  • -\displaystyle \frac{\sqrt{2}}{3}
  • \displaystyle \frac{\sqrt{3}}{1}
  • \displaystyle \frac{1}{\sqrt{3}}

\displaystyle \int_{0}^{a}\frac{dx}{x+\sqrt{a^{2}-x^{2}}}=
  • \pi
  • \dfrac{\pi}{3}
  • -\pi
  • \dfrac{\pi}{4}

\displaystyle \int_{0}^{\pi/2}\sqrt{\cos x}\sin^{5}xdx=
  • \displaystyle \frac{34}{231}
  • \displaystyle \frac{64}{231}
  • \displaystyle \frac{30}{321}
  • \displaystyle \frac{128}{231}
\displaystyle \int_{1}^{2}\mathrm{x}^{2\mathrm{x}}[1+\log \mathrm{x}]\mathrm{d}\mathrm{x}=
  • \displaystyle \frac{9}{2}
  • \displaystyle \frac{11}{2}
  • \displaystyle \frac{13}{2}
  • \displaystyle \frac{15}{2}
If \mathrm{a}>\mathrm{b} then \displaystyle \int_{0}^{\pi}\frac{\mathrm{d}\mathrm{x}}{\mathrm{a}+\mathrm{b}\sin \mathrm{x}}=
  • \displaystyle \frac{2}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}}\cot^{-1}(\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}})
  • \displaystyle \frac{1}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}}\cot^{-1}(\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}})
  • \displaystyle \frac{1}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}}\tan^{-1}(\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}})
  • \displaystyle \frac{2}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}}\tan^{-1}(\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}})
lf \displaystyle \int_{0}^{\infty}e^{-\mathrm{x}^{2}}\mathrm{d}\mathrm{x}=\frac{\sqrt{\pi}}{2}, then \displaystyle \int_{0}^{\infty}e^{-ax^{2}}dx,\ \mathrm{a}>0 is
  • \displaystyle \frac{\sqrt{\pi}}{2}
  • \displaystyle \frac{\sqrt{\pi}}{2a}
  • 2 \displaystyle \frac{\sqrt{\pi}}{a}
  • \displaystyle \frac{1}{2}\sqrt{\frac{\pi}{a}}
Let \displaystyle\frac{d}{dx}(F(x))=\frac{e^{\displaystyle\sin{x}}}{x}, x>0. If \displaystyle\int_1^4{\frac{2e^{\displaystyle\sin{x^2}}}{x}dx}=F(k)-F(1), then the possible value of k is
  • 10
  • 14
  • 16
  • 18
Observe the following Lists
List-IList-II
A: \displaystyle \int_{-2}^{2}\frac{1}{4+x^{2}}dx1) \displaystyle \frac{\pi}{3}
B: \displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}dx2) 0
C: \displaystyle \int_{0}^{\pi}\cos 3x.\cos 2xdx3) \displaystyle \frac{\pi}{4}
4) \displaystyle \frac{\pi}{2}
  • A-3, B-1, C-4
  • A-3, B-1, C-2
  • A-1, B-3, C-2
  • A-4, B-1, C-2
If \displaystyle \int_{0}^{\pi/3}\frac{\cos x}{3+4\sin x}dx=k\log(\frac{3+2\sqrt{3}}{3}), then \mathrm{k} is equal to
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{8}
The value of the integral 
\displaystyle \int_{0}^{3\alpha}\text{cosec}(x -\alpha)\text{cosec}(x-2\alpha) dx is
  • 2\displaystyle \sec\alpha\log(\frac{1}{2}\text{cosec}\alpha)
  • 2\displaystyle \sec\alpha\log(\frac{1}{2}\sec\alpha)
  • 2 \text{cosec}\alpha\log(\sec\alpha)
  • 2 \displaystyle \text{cosec}\alpha\log(\frac{1}{2}\sec\alpha)
If I_{n}=\displaystyle \int_{0}^{\frac{\pi}{4}}\tan^{n} dx, then \dfrac{1}{I_{2}+I_{4}},\dfrac{1}{I_{3}+I_{5}},\dfrac{1}{I_{4}+I_{6}}\cdots form
  • an A.P
  • a G.P
  • a H.P
  • an AGP
If f(x) = x - x^2 +1 & g(x)=max\left \{ f(t) ;0\leq t< x \right \}, then \overset {1}{\underset { 0 }{ \int } }  g (x) dx = ?
  • \dfrac{29}{24}
  • \dfrac{7}{6}
  • \dfrac{5}{4}
  • none of these
\displaystyle \int_{0}^{1}\frac{3^{x+1}-4^{x-1}}{12^{x}}dx=

  • \displaystyle \frac{9}{4}log_{4}\, e
  • \displaystyle \frac{9}{4}log_{4}\, e-\frac{1}{6}log_{3}e
  • \displaystyle log_{4}3
  • None of these
Let \displaystyle \frac{d}{dx}F(x)=\frac{e^{{s}{m}{x}}}{x} , x>0lf \displaystyle \int_{1}^{4}\frac{3}{x}e^{{s}{m}{x}^{3}}dx=F(k)-F(1)then one of the possible values of {k} is
  • 16
  • 62
  • 64
  • 15
\displaystyle\int_0^\infty{f\left(x+\frac{1}{x}\right).\frac{\ln{x}}{x}dx} is equal to
  • 0
  • 1
  • \displaystyle\frac{1}{2}
  • cannot be evaluated
\displaystyle \int_{0}^{1}\displaystyle \frac{x(2x^{2}+1)}{x^{8}+2x^{6}-x^{2}+1}dx=
  • \displaystyle \frac{\pi }{3}
  • \displaystyle \frac{\pi }{2\sqrt{3}}
  • \displaystyle \frac{2\pi }{3}
  • \displaystyle \frac{\pi }{6}
If I_{n}=\displaystyle \int_{0}^{\infty}e^{-x}x^{n-1} dx, then \displaystyle \int_{0}^{\infty}e^{-\lambda x}x^{n-1} dx is equal to?
  • \lambda I_{\mathrm{n}}
  • \displaystyle \frac{1}{\lambda}I_{\mathrm{n}}
  • \displaystyle \frac{I_{\mathrm{n}}}{\lambda^{\mathrm{n}}}
  • \lambda^{n}I_{n}
The value of \displaystyle \int_{0}^{\pi}\dfrac {dx}{1+2sin^2x} is
  • 0
  • \dfrac {\pi}{2\sqrt 3}
  • \dfrac {\pi}{\sqrt 3}
  • None of these
The value of the integral \displaystyle \int_{0 }^{\log5}\frac{e^x\sqrt{e^x-1}}{e^x+3}\:dx is
  • 3+2\pi
  • 4-\pi
  • 2+\pi
  • none of these
The value of the integral  \displaystyle \int_{0}^{\frac{1}{\sqrt{3}}}\frac{dx}{(1+x^2)\sqrt{1-x^2}}
  • \displaystyle \frac{\pi }{2\sqrt{2}}
  • \displaystyle \frac{\pi }{4\sqrt{2}}
  • \displaystyle \frac{\pi }{8\sqrt{2}}
  • none of these
The value of \displaystyle {\int}_0^{\pi}\frac{dx}{1+2 \sin^2 x} is
  • 0
  • \displaystyle \frac{\pi}{2\sqrt{3}}
  • \displaystyle \frac{\pi}{\sqrt{3}}
  • none of these
\displaystyle \int_{- \dfrac{\pi}{2}}^{\dfrac{\pi}{2}}\sin^{2}x. \cos^{3} x dx is equal to
  • \displaystyle \dfrac{4\pi}{30}
  • \displaystyle \dfrac{4}{15}
  • \displaystyle \dfrac{\pi}{30}
  • \displaystyle \dfrac{1}{15}
\displaystyle \int_{\frac{5}{2}}^{5}\frac{\sqrt{(25-x^2)^3}}{x^4}\:dx is equal to
  • \displaystyle \frac{\pi }{6}
  • \displaystyle \frac{2\pi }{3}
  • \displaystyle \frac{5\pi }{6}
  • \displaystyle \frac{\pi }{3}
If \displaystyle \int_{\log 2}^{x}\displaystyle \frac{dx}{\sqrt{e^{x}-1}}= \displaystyle \frac{\pi }{6}, the value of x is
  • 4
  • \log 8
  • \log 4
  • none of these
The minimum value of the function f(x) = \int^x_0 \frac{d \theta}{cos \theta} + \int^{\pi/2}_x \frac{d \theta}{sin \theta} where x \in [0, \frac{\pi}{2}], is  
  • 2ln(\sqrt{2} + 1)
  • ln(2\sqrt{2} + 2)
  • ln(\sqrt{3} + 2)
  • ln(\sqrt{2} + 3)
The value of \int _{-\pi /2}^{\pi /2}\left (psin^3 x+qsin^4 x +r sin^5 x  \right ) does not depend on

  • p, q, r
  • p, r only
  • p only
  • q, r only
If  \displaystyle \int_{0}^{1} \frac{\tan^{-1} x}{x}dx  is equal to
  • \displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sin x}{x}dx
  • \displaystyle \int_{0}^{\frac{\pi}{2}}\frac{x}{\sin x}dx
  • \displaystyle \frac{1}{2} \int_{0}^{\frac{\pi}{2}}\frac{\sin x}{x}dx
  • \displaystyle \frac{1}{2} \int_{0}^{\frac{\pi}{2}}\frac{x}{\sin x}dx
Let   \displaystyle I_1=\int_{0}^{1}\frac{e^x dx}{1+x} and \displaystyle I_2=\int_{0}^{1}\dfrac{x^2 dx}{e^{x^3}(2-x^3)}.
Then \dfrac{I_1}{I_2} is equal to?
  • \displaystyle \dfrac{3}{e}
  • \displaystyle \frac{e}{3}
  • \displaystyle {3}{e}
  • \displaystyle \dfrac{1}{3e}
The value of \displaystyle \int_{0}^{\infty} \frac {dx}{1 + x^4} is
  • same as that of \displaystyle \int_{0}^{\infty} \frac {x^2 + 1dx}{1 + x^4}
  • \displaystyle \frac {\pi}{2\sqrt{2}}
  • same as that of \displaystyle \int_{0}^{\infty} \frac {x^2 \: dx}{1 + x^4}
  • \displaystyle \frac {\pi}{\sqrt{2}}
The value of the integral \displaystyle \int_{-\pi}^{\pi} (\cos  ax - \sin  b  x)^2 dx, where a and b are integers, is
  • 2\pi (1+a+b)
  • 0
  • \pi
  • 2 \pi
Evaluate \displaystyle\int_0^{\displaystyle\frac{\pi}{4}}{\frac{\sin{x}+\cos{x}}{9+16\{1-{(\sin{x}-\cos{x})}^2\}}dx}
  • \displaystyle\frac{1}{20}(\log{\sqrt{3}})
  • \displaystyle\frac{1}{10}(\log{3})
  • \displaystyle\frac{1}{20}(\log{3})
  • \displaystyle\frac{1}{20}(\log{3}-\log{2})
If \displaystyle \int_{1}^{2} e^{x^2} dx= a, then \displaystyle \int_{e}^{e^4}\sqrt{\ln x} \:dx is equal to
  • 2e^4-2e-a
  • 2e^4-e-a
  • 2e^4-e-2a
  • e^4-e-a
\displaystyle \int_{ 0 }^{\infty}\frac{ \:dx}{\left [ x+\sqrt{x^2+1} \right ]^3} is equal to
  • \displaystyle \frac{3}{8}
  • \displaystyle \frac{1}{8}
  • \displaystyle -\frac{3}{8}
  • none of these
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers