Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 1 - MCQExams.com

10tan1xdx.
  • π212log2.
  • π4+12log2.
  • π214log2.
  • π412log2.
dxx10x2;x>1= ______ +C.
  • 14log|x10x2+x2|
  • 12log|x10x2|
  • 14sec1(x4)
  • 14sec1(x4)
The value of logxdx is
  • xlog(xe)+c
  • x2logx+c
  • exlogx+c
  • (x+1)logx+c
x.exdx=
  • x.ex+c
  • ex(x1)+c
  • ex(x+1)+c
  • ex(x+2)+c
x3exdx=
  • ex(x33x2+6x+6)+c
  • ex(x33x2+6x6)+c
  • ex(x3+3x2+6x+6)+c
  • ex(x33x26x+6)+c
logx+1dx=
  • 12[(x+1)log(x+1)x]+c
  • 12[(x1)log(x+1)x]+c
  • 12[xlog(x+1)x22]+c
  • 12[(x+1)log(x+1)x2]+c
[sin(logx)+cos(logx)]dx=
  • exsin(logx)+c
  • excos(logx)+c
  • xsin(logx)+c
  • xcos(logx)+c
The integral (1+x1x)ex+1xdx is equal to 
  • (x1)ex+1x+c
  • xex+1x+c
  • (x+1)ex+1x+c
  • xex+1x+c
The integral xcos1(1x21+x2)dx is equal to :
(Note : (x>0))
  • x+(1+x2)cot1x+c
  • x+(1+x2)tan1x+c
  • x(1+x2)tan1xc
  • x(1+x2)cot1x+c
If f(x) dx =Ψ(x) , then x5f(x3) dx is equal to
  • 13x3Ψ(x3)3x3Ψ(x3)dx+C
  • 13x3Ψ(x3)x2Ψ(x3)dx+C
  • 13[x3Ψ(x3)x3Ψ(x3)dx]+C
  • 13[x3Ψ(x3)x2Ψ(x3)dx]+C
If f(x)=f(x) and g(x)=f(x) and F(x)=(f(x2))2+(g(x2))2 and given that F(5)=5, then F(10) is equal to 
  • 5
  • 10
  • 0
  • 15
f(x)g(x)f(x)g(x)f(x)g(x)[Log(g(x))Log(f(x))]dx=
  • Log(g(x)f(x))+C
  • 12|Log(g(x)f(x))|2+C
  • (g)xf(x)Log(g(x)f(x))+C
  • Log[g(x)f(x)]g(x)f(x)+C
xlogxdx is equal to
  • x24(2logx1)+c
  • x22(2logx1)+c
  • x24(2logx+1)+c
  • x22(2logx+1)
The value of etanθ(secθsinθ)dθ is equal to ?
  • etanθsinθ+C
  • etanθsinθ+C
  • etanθsecθ+C
  • etanθcosθ+C
log(logx)+1logxdx
  • xlog(logx)+c
  • xlogx+c
  • x+c
  • None
The integral of ex(sinx+cosx)dx is
  • excosx+c
  • exsinx+c
  • exsecx+c
  • none of this
If 2x14xdx=Ksin1(2x)+C, then the value of K is equal to
  • n 2
  • 12n 2
  • 12
  • 1n 2
The value of integral tan1(x31+x2)+tan1(1+x2x3)dx is equal to 
  • 1
  • π2+c
  • π2+c
  • (π2)x+c

(elogx+sinx)cosx dx is equal to

  • xsinx+cosxsin2x2+c
  • xcosxsin2x+c
  • xsinx+cosx(cos2x)/2+c
  • x2sinx+cosxsin3x+c
xsin1xdx
  • 14sin1x(2x+1)+x1x24+c
  • 14sin1x(2x2+1)+x1x24+c]
  • 14cos1x(2x+1)+x1x24+c
  • 14sin1x(2x+1)x1x24+c
Solve 1925x2dx
  • 15sin1(5x3)+C
  • sin1(5x3)+C
  • 15sin1(3x5)+C
  • sin1(3x5)+C
Find the general solution of dydx=2yx
  • y=e5logx+c
  • y=e3logx+c
  • y=e2logx+c
  • None of these
The value of logx(x+1)2dx is
  • logxx+1+logxlog(x+1)+C
  • logxx+1+logxlog(x+1)+C
  • logxx+1logxlog(x+1)+C
  • logxx+1logxlog(x+1)+C
sinxlog(secx+tanx)dx=f(x)+x+c then f(x)=
  • cosxlog(secx+tanx)+c
  • sinxlog(secx+tanx)+c
  • cosxlogsecx+tanx)+c
  • cosxlogsecx+c
[f(x)g(x)f(x)g(x)f(x)g(x)].[log(g(x))log(f(x))]dx=
  • logg(x)f(x)+c
  • 12(logg(x)f(x))2+c
  • g(x)f(x)log(g(x)f(x))+c
  • f(x)g(x)log(g(x)f(x))+c
12x38x2dx equals
  • (x8)5/25+8(x8)3/23+c
  • (x8)5/25+83(x8)3/2+c
  • (x8)5/23+85(x8)3/2+c
  • None of these
 secθ dθ
  • (secθ+tanθ)2+c
  • (secθ+tanθ)3[2+4tanθ(secθ+tanθ)]+c
  • ln(|secθ+tanθ|)+c
  • 3(secθ+tanθ)2[2+tanθ(secθ+tanθ)]+c
cotx2xdx is equal to =_____+C.
  • 2log|sinx|
  • log|sinx|
  • 12log|sinx|
  • None of these
Evaluate :
cos3xelogsinxdx
  • cos4x4+C
  • sinxx2+C
  • sin3x3+C
  • None of these
The value of (x1)ex dx is equal to 
  • xex+C
  • xex+C
  • xex+C
  • xex+C
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers