Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 10 - MCQExams.com

(sinx)99(cosx)101dx=_______+C.
  • (tanx)100100
  • (tanx)22
  • (tanx)9898
  • (tanx)9797
Evaluate x2logxdx.
  • x22logx19x2+c
  • x33logx19x2+c
  • x33logx19x3+c
  • x33logx+19x3+c
The value of ex.x2+1(x+1)2dx is 
  • ex(x1x+1)+C
  • ex(x+1x1)+C
  • ex.x+C
  • None of these
ex(logsinx+cotx)dx=______+C.
  • excotx
  • exlogsinx
  • extanx
  • None of these
1cosxdx=_______+C;2π<x<3π
  • 22cosx2
  • 2cosx2
  • 22cosx2
  • 122cosx2
The integral  cos(logex)dx  is equal to :
(where  C  is a constant of integration)
  • x2[sin(logex)cos(logex)]+C
  • x2[cos(logex)+sin(logex)]+C
  • x[cos(logex)+sin(logex)]+C
  • x[cos(logex)sin(logcx)]+C
Evaluate: x4+11+x6dx
  • tan1(x)tan1(x3)+c
  • tan1(x)13tan1(x3)+c
  • tan1(x)+tan1(x3)+c
  • tan1(x)+13tan1(x3)+c
x2+1x4+1dx=
  • 12tan1(x2+12x)+c
  • tan1(x2+12x)+c
  • 12tan1(x212x)+c
  • tan1(x212x)+c
dx4(x+1)5(x+2)3 is equal to :
  • 4(x+1x+2)1/4+c
  • 4(x+1x+2)1/4+c
  • 4(x+2x+1)1/4+c
  • None of these
etan1x(1+x+x21+x2)dx is equal to
  • etan1x+c
  • etan1x+c
  • xetan1x+c
  • xetan1x+c
cosx1sinx+1exdx is equal to:
  • excosx1+sinx+c
  • cexsinx1+sinx
  • cex1+sinx
  • cexcosx1+sinx
If 1(1+x)xdx=f(x)+A, where A is any arbitary constant, then the function f(x) is
  • 2tan1x
  • 2tan1x
  • 2cot1x
  • loge(1+x)
dx(x2+1)(x2+4)=
  • 13tan1x13tan1x2+c
  • 13tan1x+13tan1x2+c
  • 13tan1x16tan1x2+c
  • tan1x2tan1x2+c
Integrate: xx+4dx
  • 23(x+4)328x+4
  • 23(x+4)32+8x+4
  • 23(x+4)32+4x+4
  • None of these
The angle made by the tangent line at (1, 3) on the curve y=4xx2 with ¯OX is 
  • tan12
  • tan1(1/2)
  • tan12
  • None of these
If (udvdx)dx=uvwdx, then w=
  • dudxdvdx
  • vdudx
  • ddx(uv)
  • udvdx
xtan1x(1+x2)3/2dx=
  • x+tan1x(1+x2)+c
  • xtan1x(1+x2)+c
  • tan1xx(1+x2)+c
  • None of these
dx9x2+1=_____.
  • 13tan1(2x)+c
  • 13tan1x+c
  • 13tan1(3x)+c
  • 13tan1(6x)+c
Evaluate ex(log(x)+1x2)dx
  • ex(logx+1x2)
  • ex(logx+1x)
  • ex(logx1x2)
  • ex(logx1x)
(2+logx)(ex)xdx=.....+C;x>1
  • (ex)x
  • xx
  • (ex)x
  • exx
If esec(secxtanxf(x)+secxtanx+tan2x)dx=esecxf(x)+c.Thenf(x)is
  • secx+x tanx+12
  • xsecx+xtanx+12
  • xsecx+x2tanx+12
  • secx+tanx+12
badx2+3x=
  • 13loge(2+3b)
  • 13loge(2+2a)
  • 13loge(2+3b2+3a)
  • 13loge(2+3a2+3b)
2x31x4+xdx is equal to?
  • ln|x3+1x|+c
  • ln|x3+1x2|+c
  • 12ln|x3+1x2|+c
  • 12ln|x3+1x|+c
If 22x2xdx=A22x+c, then A=?
  • 1log2
  • log2
  • (log2)2
  • 1(log2)2
If dxx3(1+x6)2/3=xf(x)(1+x6)13+C
where C is a constant of integration, then the function f(x) is equal to - 
  • 16x3
  • 3x2
  • 12x2
  • 12x3
Evaluate : secx(secx+tanx)dx
  • tanx+secx+C
  • tanxsecx+C
  • tanx+secx+C
  • tanxsecx+C
What is dx2x22x+1 equal to ?
  • tan1(2x1)2+c
  • 2tan1(2x1)+=c
  • tan1(2x+1)2+c
  • tan1(2x1)+c
xcosxlogxsinxx(logx)2dx=
  • sinxlogx+C
  • cosxlogx+C
  • logxsinx+C
  • logxcosx+C
If xsinxdx=xcosx+α, then α is equal to
  • sinx+C
  • cosx+C
  • C
  • None of these
Evaluate : cos2xcos2xsin2xdx
  • cotxtanx+C
  • cotx+tanx+C
  • cotxtanx+C
  • cotx+tanx+C
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers