Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 10 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Indefinite Integrals
Quiz 10
∫
(
sin
x
)
99
(
cos
x
)
−
101
d
x
=
_
_
_
_
_
_
_
+
C
.
Report Question
0%
(
tan
x
)
100
100
0%
(
tan
x
)
2
2
0%
(
tan
x
)
98
98
0%
(
tan
x
)
97
97
Explanation
I
=
∫
(
sin
x
)
99
.
(
cos
x
)
−
101
d
x
.
I
=
∫
(
sin
x
)
99
(
cos
x
)
101
d
x
I
=
∫
(
sin
x
cos
x
)
99
.
1
cos
2
x
d
x
I
=
∫
(
tan
x
)
99
.
sec
2
x
d
x
P
u
t
tan
x
=
t
.
sec
2
x
d
x
=
d
t
I
=
∫
t
99
d
t
I
=
t
100
100
+
c
I
=
(
tan
x
)
100
100
+
c
Hence, this is the answer.
Evaluate
∫
x
2
log
x
d
x
.
Report Question
0%
x
2
2
log
x
−
1
9
x
2
+
c
0%
x
3
3
log
x
−
1
9
x
2
+
c
0%
x
3
3
log
x
−
1
9
x
3
+
c
0%
x
3
3
log
x
+
1
9
x
3
+
c
Explanation
We have,
I
=
∫
x
2
log
x
d
x
We have,
∫
u
.
v
d
x
=
u
∫
v
d
x
−
∫
(
d
u
d
x
∫
v
d
x
)
d
x
I
=
log
x
∫
x
2
d
x
−
∫
(
d
d
x
log
x
∫
x
2
d
x
)
d
x
I
=
log
x
x
3
3
−
∫
(
1
x
x
3
3
)
d
x
I
=
x
3
log
x
3
−
∫
(
x
2
3
)
d
x
I
=
x
3
log
x
3
−
x
3
9
+
C
Hence, this is the answer.
The value of
∫
e
x
.
x
2
+
1
(
x
+
1
)
2
d
x
is
Report Question
0%
e
x
(
x
−
1
x
+
1
)
+
C
0%
e
x
(
x
+
1
x
−
1
)
+
C
0%
e
x
.
x
+
C
0%
None of these
Explanation
I
=
∫
e
x
x
2
+
1
(
x
+
1
)
2
d
x
=
∫
e
x
x
2
+
1
+
2
x
−
2
x
(
x
+
1
)
2
d
x
=
∫
e
x
(
x
+
1
)
2
−
2
x
(
x
+
1
)
2
d
x
=
∫
e
x
{
1
−
2
x
(
x
+
1
)
2
}
d
x
=
∫
e
x
d
x
−
∫
e
x
⋅
2
x
(
x
+
1
)
2
d
x
.
=
e
x
−
I
1
+
e
Let
I
1
=
∫
e
x
⋅
2
x
(
x
+
1
)
2
d
x
Here
2
x
(
x
+
1
)
2
=
A
(
x
+
1
)
+
B
(
x
+
1
)
2
2
x
=
A
(
x
+
1
)
+
B
If
x
=
−
1
,
2
(
−
1
)
=
B
⇒
B
=
−
2
If
x
=
1
,
2
=
2
A
+
(
−
2
)
2
A
=
2
+
2
A
=
4
2
=
2
∴
2
x
(
x
+
1
)
2
=
2
x
+
1
−
2
(
x
+
1
)
2
∴
I
1
=
∫
e
x
{
2
x
+
1
−
2
(
x
+
1
)
2
}
d
x
=
∫
2
e
x
{
1
x
+
1
−
1
(
x
+
1
)
2
}
d
x
=
2
∫
e
x
{
1
x
+
1
−
1
(
x
+
1
)
2
}
d
x
Which is of the form
∫
e
x
[
f
(
x
)
+
f
′
(
x
)
]
d
x
=
2
e
x
⋅
(
1
x
+
1
)
[
∵
∫
e
x
[
f
(
x
)
+
f
′
(
x
)
]
d
x
=
e
x
f
(
x
)
+
c
]
=
2
e
x
x
+
1
∴
I
=
e
x
−
2
e
x
x
+
1
+
c
=
e
x
(
1
−
2
x
+
1
)
+
c
=
e
x
{
x
+
1
−
2
x
+
1
}
+
c
∴
I
=
e
x
(
x
−
1
x
+
1
)
+
c
.
∫
e
x
(
log
sin
x
+
cot
x
)
d
x
=
_
_
_
_
_
_
+
C
.
Report Question
0%
e
x
cot
x
0%
e
x
log
sin
x
0%
e
x
tan
x
0%
None of these
Explanation
∫
e
x
(
log
sin
x
+
cot
x
)
d
x
As we know
∫
e
x
[
f
(
x
)
+
f
′
(
x
)
]
d
x
=
e
x
f
(
x
)
+
c
f
(
x
)
=
log
sin
x
f
′
(
x
)
=
1
sin
x
.
cos
x
=
cot
x
∫
e
x
(
log
sin
x
+
cot
x
)
d
x
.
=
e
x
(
log
sin
x
)
+
c
Hence, this is the answer.
∫
√
1
−
cos
x
d
x
=
_
_
_
_
_
_
_
+
C
;
2
π
<
x
<
3
π
Report Question
0%
−
2
√
2
cos
x
2
0%
−
√
2
cos
x
2
0%
2
√
2
cos
x
2
0%
−
1
2
√
2
cos
x
2
Explanation
We have,
I
=
∫
√
1
−
cos
x
d
x
I
=
∫
√
(
sin
2
x
2
+
cos
2
x
2
−
cos
2
x
2
+
sin
2
x
2
)
d
x
I
=
∫
√
2
sin
2
x
2
d
x
I
=
√
2
∫
sin
x
2
d
x
I
=
√
2
1
1
2
(
−
cos
x
2
)
+
C
I
=
−
2
√
2
cos
x
2
+
C
Hence, this is the answer.
The integral
∫
cos
(
log
e
x
)
d
x
is equal to :
(where
C
is a constant of integration)
Report Question
0%
x
2
[
sin
(
log
e
x
)
−
cos
(
log
e
x
)
]
+
C
0%
x
2
[
cos
(
log
e
x
)
+
sin
(
log
e
x
)
]
+
C
0%
x
[
cos
(
log
e
x
)
+
sin
(
log
e
x
)
]
+
C
0%
x
[
cos
(
log
e
x
)
−
sin
(
log
c
x
)
]
+
C
Explanation
I
=
∫
cos
(
ℓ
n
x
)
d
x
I
=
cos
(
ln
x
)
⋅
x
+
∫
sin
(
ℓ
n
x
)
d
x
cos
(
ℓ
n
x
)
x
+
[
sin
(
ℓ
n
x
)
⋅
x
−
∫
cos
(
ℓ
n
x
)
d
x
]
I
=
x
2
[
sin
(
ℓ
n
x
)
+
cos
(
ℓ
n
x
)
]
+
C
Evaluate:
∫
x
4
+
1
1
+
x
6
d
x
Report Question
0%
t
a
n
−
1
(
x
)
−
t
a
n
−
1
(
x
3
)
+
c
0%
t
a
n
−
1
(
x
)
−
1
3
t
a
n
−
1
(
x
3
)
+
c
0%
t
a
n
−
1
(
x
)
+
t
a
n
−
1
(
x
3
)
+
c
0%
t
a
n
−
1
(
x
)
+
1
3
t
a
n
−
1
(
x
3
)
+
c
Explanation
Given,
∫
x
4
+
1
x
6
+
1
d
x
=
∫
x
4
+
1
x
6
+
1
×
x
2
+
1
x
2
+
1
d
x
=
∫
(
x
6
+
1
)
+
x
2
(
x
2
+
1
)
(
x
6
+
1
)
(
x
2
+
1
)
d
x
=
∫
d
x
x
2
+
1
+
1
3
∫
3
x
2
x
6
+
1
d
x
=
tan
−
1
x
+
1
3
3
⋅
∫
x
2
x
6
+
1
d
x
substitute
u
=
x
3
=
tan
−
1
x
+
1
3
3
⋅
∫
1
3
(
u
2
+
1
)
d
u
=
tan
−
1
x
+
1
3
3
⋅
1
3
⋅
∫
1
u
2
+
1
d
u
=
tan
−
1
x
+
1
3
3
⋅
1
3
⋅
tan
−
1
u
=
tan
−
1
x
+
1
3
3
⋅
1
3
⋅
tan
−
1
x
3
=
tan
−
1
x
+
1
3
tan
−
1
x
3
+
C
∫
x
2
+
1
x
4
+
1
d
x
=
Report Question
0%
1
√
2
tan
−
1
(
x
2
+
1
√
2
x
)
+
c
0%
tan
−
1
(
x
2
+
1
√
2
x
)
+
c
0%
1
√
2
tan
−
1
(
x
2
−
1
√
2
x
)
+
c
0%
tan
−
1
(
x
2
−
1
√
2
x
)
+
c
Explanation
Given,
∫
x
2
+
1
x
4
+
1
d
x
=
∫
1
x
2
+
1
1
x
2
+
x
2
d
x
..............dividing by
x
2
=
∫
1
x
2
+
1
1
x
2
+
x
2
−
2
+
2
d
x
=
∫
1
x
2
+
1
(
x
−
1
x
)
2
+
2
d
x
x
−
1
x
=
t
→
d
t
=
1
x
2
+
1
d
x
=
∫
1
t
2
+
2
d
t
=
1
√
2
tan
−
1
t
√
2
+
c
=
1
√
2
tan
−
1
x
−
1
x
√
2
+
c
=
1
√
2
tan
−
1
x
2
−
1
√
2
x
+
c
∫
d
x
4
√
(
x
+
1
)
5
(
x
+
2
)
3
is equal to :
Report Question
0%
4
(
x
+
1
x
+
2
)
1
/
4
+
c
0%
−
4
(
x
+
1
x
+
2
)
−
1
/
4
+
c
0%
−
4
(
x
+
2
x
+
1
)
1
/
4
+
c
0%
None of these
∫
e
tan
−
1
x
(
1
+
x
+
x
2
1
+
x
2
)
d
x
is equal to
Report Question
0%
−
e
t
a
n
−
1
x
+
c
0%
e
t
a
n
−
1
x
+
c
0%
−
x
e
t
a
n
−
1
x
+
c
0%
x
e
t
a
n
−
1
x
+
c
Explanation
∫
e
tan
−
1
x
(
1
+
x
+
x
2
1
+
x
2
)
d
x
Let
x
=
tan
t
→
d
x
=
sec
2
t
d
t
=
∫
e
tan
−
1
(
tan
t
)
(
1
+
tan
t
+
tan
2
t
1
+
tan
2
t
)
sec
2
t
d
t
=
∫
e
t
(
tan
t
+
sec
2
t
sec
2
t
)
sec
2
t
d
t
=
∫
e
t
(
tan
t
+
sec
2
t
)
d
t
=
∫
e
t
tan
t
d
t
+
∫
e
t
sec
2
t
d
t
tan
t
∫
e
t
d
t
−
∫
d
d
t
(
tan
t
)
(
∫
e
t
d
t
)
d
t
+
∫
e
t
(
sec
2
t
)
d
t
+
c
=
e
t
tan
t
−
∫
e
t
(
sec
2
t
)
d
t
+
∫
e
t
(
sec
2
t
)
d
t
+
c
=
e
t
tan
t
+
c
=
e
tan
−
1
x
tan
tan
−
1
x
+
c
=
x
e
tan
−
1
x
+
c
Hence
∫
e
tan
−
1
x
(
1
+
x
+
x
2
1
+
x
2
)
d
x
=
x
e
tan
−
1
x
+
c
∫
cos
x
−
1
sin
x
+
1
e
x
d
x
is equal to:
Report Question
0%
e
x
cos
x
1
+
sin
x
+
c
0%
c
−
e
x
sin
x
1
+
sin
x
0%
c
−
e
x
1
+
sin
x
0%
c
−
e
x
cos
x
1
+
sin
x
If
∫
1
(
1
+
x
)
√
x
d
x
=
f
(
x
)
+
A
, where A is any arbitary constant, then the function f(x) is
Report Question
0%
2
tan
−
1
x
0%
2
tan
−
1
√
x
0%
2
cot
−
1
√
x
0%
l
o
g
e
(
1
+
x
)
Explanation
Given,
∫
1
(
1
+
x
)
√
x
d
x
put
u
=
√
x
=
∫
2
1
+
u
2
d
u
=
2
tan
−
1
(
u
)
=
2
tan
−
1
(
√
x
)
+
C
=
f
(
x
)
+
A
∴
f
(
x
)
=
2
tan
−
1
(
√
x
)
∫
d
x
(
x
2
+
1
)
(
x
2
+
4
)
=
Report Question
0%
1
3
tan
−
1
x
−
1
3
tan
−
1
x
2
+
c
0%
1
3
tan
−
1
x
+
1
3
tan
−
1
x
2
+
c
0%
1
3
tan
−
1
x
−
1
6
tan
−
1
x
2
+
c
0%
tan
−
1
x
−
2
tan
−
1
x
2
+
c
Explanation
Given,
∫
d
x
(
x
2
+
1
)
(
x
2
+
4
)
=
1
3
∫
3
d
x
(
x
2
+
1
)
(
x
2
+
4
)
=
1
3
∫
x
2
+
4
−
(
x
2
+
1
)
(
x
2
+
1
)
(
x
2
+
4
)
d
x
=
∫
1
3
(
x
2
+
1
)
d
x
−
1
3
(
x
2
+
4
)
d
x
=
1
3
tan
−
1
(
x
)
−
1
6
tan
−
1
(
x
2
)
+
C
Integrate:
∫
x
√
x
+
4
d
x
Report Question
0%
2
3
(
x
+
4
)
3
2
−
8
√
x
+
4
0%
2
3
(
x
+
4
)
3
2
+
8
√
x
+
4
0%
2
3
(
x
+
4
)
3
2
+
4
√
x
+
4
0%
None of these
Explanation
Given,
I
=
∫
x
√
x
+
4
d
x
let
u
=
√
x
+
4
⇒
d
u
=
1
√
x
+
4
⇒
∫
2
(
u
2
−
4
)
d
u
=
2
(
∫
u
2
d
u
−
∫
4
d
u
)
=
2
(
u
3
3
−
4
u
)
=
2
(
(
√
x
+
4
)
3
3
−
4
√
x
+
4
)
=
2
(
1
3
(
x
+
4
)
3
2
−
4
√
x
+
4
)
=
2
3
(
x
+
4
)
3
2
−
8
√
x
+
4
The angle made by the tangent line at (1, 3) on the curve
y
=
4
x
−
x
2
with
¯
O
X
is
Report Question
0%
tan
−
1
2
0%
tan
−
1
(
1
/
2
)
0%
tan
−
1
−
2
0%
None of these
Explanation
Given,
y
=
4
x
−
x
2
d
y
d
x
=
4
−
2
x
d
y
d
x
(
1
,
3
)
=
4
−
2
(
1
)
=
2
Therefore, angle made by tangent,
tan
θ
=
2
∴
θ
=
tan
−
1
2
If
∫
(
u
d
v
d
x
)
d
x
=
u
v
−
∫
w
d
x
, then
w
=
Report Question
0%
d
u
d
x
d
v
d
x
0%
v
d
u
d
x
0%
d
d
x
(
u
v
)
0%
u
d
v
d
x
Explanation
Given,
∫
(
u
d
v
d
x
)
d
x
=
u
v
−
∫
w
d
x
it is called as, product rule integration,
∫
u
.
v
d
x
=
u
∫
v
d
x
−
∫
(
d
u
d
x
∫
v
d
x
)
d
x
∫
(
u
d
v
d
x
)
d
x
=
u
v
−
∫
v
d
u
d
x
d
x
∴
w
=
v
d
u
d
x
∫
x
tan
−
1
x
(
1
+
x
2
)
3
/
2
d
x
=
Report Question
0%
x
+
tan
−
1
x
√
(
1
+
x
2
)
+
c
0%
x
−
tan
−
1
x
√
(
1
+
x
2
)
+
c
0%
tan
−
1
x
−
x
√
(
1
+
x
2
)
+
c
0%
None of these
Explanation
Let
I
=
∫
x
tan
−
1
x
(
1
+
x
2
)
3
/
2
d
x
let
x
=
tan
θ
d
x
=
sec
2
θ
d
θ
I
=
∫
tan
θ
.
θ
.
sec
2
θ
sec
3
θ
d
θ
=
∫
θ
tan
θ
sec
θ
d
θ
I
=
∫
θ
.
sin
θ
d
θ
=
−
θ
cos
θ
+
∫
cos
θ
=
−
θ
cos
θ
+
sin
θ
=
−
tan
−
1
x
√
1
+
x
2
+
x
√
1
+
x
2
=
x
−
tan
−
1
x
√
1
+
x
2
+
C
∫
d
x
9
x
2
+
1
=
_____.
Report Question
0%
1
3
tan
−
1
(
2
x
)
+
c
0%
1
3
tan
−
1
x
+
c
0%
1
3
tan
−
1
(
3
x
)
+
c
0%
1
3
tan
−
1
(
6
x
)
+
c
Explanation
Consider the given integral.
I
=
∫
1
(
9
x
2
+
1
)
d
x
I
=
∫
1
9
(
x
2
+
1
9
)
d
x
I
=
1
9
∫
1
x
2
+
(
1
3
)
2
d
x
I
=
1
9
×
1
1
/
3
tan
−
1
(
x
1
/
3
)
+
C
I
=
1
3
tan
−
1
3
x
+
C
Hence, this is the answer.
Evaluate
∫
e
x
(
log
(
x
)
+
1
x
2
)
d
x
Report Question
0%
e
x
(
log
x
+
1
x
2
)
0%
e
x
(
log
x
+
1
x
)
0%
e
x
(
log
x
−
1
x
2
)
0%
e
x
(
log
x
−
1
x
)
Explanation
Given,
∫
e
x
(
log
(
x
)
+
1
x
2
)
d
x
=
∫
e
x
log
(
x
)
d
x
+
∫
e
x
x
2
d
x
We know,
∫
u
.
v
d
x
=
u
∫
v
d
x
−
∫
(
d
u
d
x
∫
v
d
x
)
d
x
=
(
e
x
log
(
x
)
−
Ei
(
x
)
)
−
e
x
x
+
Ei
(
x
)
where
Ei
(
x
)
=
∫
e
x
x
d
x
=
e
x
log
(
x
)
−
e
x
x
+
C
=
e
x
(
log
x
−
1
x
)
∫
(
2
+
log
x
)
(
e
x
)
x
d
x
=
.
.
.
.
.
+
C
;
x
>
1
Report Question
0%
(
e
x
)
x
0%
x
x
0%
(
e
x
)
−
x
0%
e
x
x
Explanation
Let
(
e
x
)
x
=
t
x
ln
e
x
=
ln
t
⇒
x
(
1
+
ln
x
)
=
ln
t
⇒
(
x
.
1
x
+
(
1
+
ln
x
)
)
d
x
=
1
t
d
t
⇒
(
e
x
)
x
(
2
+
ln
x
)
d
x
=
d
t
now
integrate on both sides
∫
d
t
=
t
+
c
⇒
(
e
x
)
x
+
c
If
∫
e
sec
(
sec
x
tan
x
f
(
x
)
+
sec
x
tan
x
+
tan
2
x
)
d
x
=
e
sec
x
f
(
x
)
+
c
.
T
h
e
n
f
(
x
)
i
s
Report Question
0%
sec
x
+
x
t
a
n
x
+
1
2
0%
x
sec
x
+
x
tan
x
+
1
2
0%
x
sec
x
+
x
2
tan
x
+
1
2
0%
sec
x
+
tan
x
+
1
2
Explanation
∫
e
s
e
c
x
(
sec
x
tan
x
f
(
x
)
+
sec
x
tan
x
+
sec
2
x
)
d
x
=
e
s
e
c
x
f
(
x
)
Differentiate both side
∫
e
s
e
c
x
(
sec
x
tan
x
f
(
x
)
+
sec
x
tan
x
+
sec
2
x
)
d
x
=
e
s
e
c
x
f
′
(
x
)
+
e
s
e
c
x
t
a
n
x
s
e
c
x
f
(
x
)
∴
sec
x
t
a
n
x
+
sec
2
x
=
f
′
(
x
)
∴
f
(
x
)
=
sec
x
+
tan
x
+
d
∫
b
a
d
x
2
+
3
x
=
Report Question
0%
1
3
l
o
g
e
(
2
+
3
b
)
0%
1
3
l
o
g
e
(
2
+
2
a
)
0%
1
3
l
o
g
e
(
2
+
3
b
2
+
3
a
)
0%
1
3
l
o
g
e
(
2
+
3
a
2
+
3
b
)
∫
2
x
3
−
1
x
4
+
x
d
x
is equal to?
Report Question
0%
l
n
|
x
3
+
1
x
|
+
c
0%
l
n
|
x
3
+
1
x
2
|
+
c
0%
1
2
ln
|
x
3
+
1
x
2
|
+
c
0%
1
2
l
n
|
x
3
+
1
x
|
+
c
Explanation
∫
2
x
3
−
1
x
4
+
x
d
x
=
∫
2
x
−
x
−
2
x
2
+
x
−
1
d
x
=
l
n
(
x
2
+
x
−
1
)
+
c
=
l
n
(
x
3
+
1
)
−
l
n
x
+
c
.
If
∫
2
2
x
⋅
2
x
d
x
=
A
⋅
2
2
x
+
c
, then
A
=
?
Report Question
0%
1
l
o
g
2
0%
l
o
g
2
0%
(
l
o
g
2
)
2
0%
1
(
l
o
g
2
)
2
Explanation
2
x
=
z
⇒
2
x
d
x
=
d
z
l
n
2
⇒
1
l
n
2
∫
2
z
d
z
=
1
(
l
n
2
)
2
2
2
x
+
c
.
If
∫
d
x
x
3
(
1
+
x
6
)
2
/
3
=
x
f
(
x
)
(
1
+
x
6
)
1
3
+
C
where
C
is a constant of integration, then the function
f
(
x
)
is equal to -
Report Question
0%
−
1
6
x
3
0%
3
x
2
0%
−
1
2
x
2
0%
−
1
2
x
3
Explanation
∫
d
x
x
3
(
1
+
x
6
)
2
/
3
=
x
f
(
x
)
(
1
+
x
6
)
1
/
3
+
C
∫
d
x
x
7
(
1
x
6
+
1
)
2
/
3
=
x
f
(
x
)
(
1
+
x
6
)
1
/
3
+
C
Let
t
=
1
x
6
+
1
d
t
=
−
6
x
7
d
x
−
1
6
∫
d
t
t
2
/
3
=
−
1
2
t
1
/
3
=
−
1
2
(
1
x
6
+
1
)
1
/
3
=
−
1
2
(
1
+
x
6
)
1
/
3
x
2
∴
f
(
x
)
=
−
1
2
x
3
Evaluate :
∫
s
e
c
x
(
s
e
c
x
+
t
a
n
x
)
d
x
Report Question
0%
t
a
n
x
+
s
e
c
x
+
C
0%
t
a
n
x
−
s
e
c
x
+
C
0%
−
t
a
n
x
+
s
e
c
x
+
C
0%
−
t
a
n
x
−
s
e
c
x
+
C
What is
∫
d
x
2
x
2
−
2
x
+
1
equal to ?
Report Question
0%
tan
−
1
(
2
x
−
1
)
2
+
c
0%
2
tan
−
1
(
2
x
−
1
)
+
=
c
0%
tan
−
1
(
2
x
+
1
)
2
+
c
0%
tan
−
1
(
2
x
−
1
)
+
c
Explanation
Given,
∫
1
2
x
2
−
2
x
+
1
d
x
complete the square
=
∫
1
2
(
x
−
1
2
)
2
+
1
2
d
x
apply
u
=
x
−
1
2
∫
2
4
u
2
+
1
d
u
apply
u
=
1
2
v
=
2
⋅
∫
1
2
(
v
2
+
1
)
d
v
=
2
⋅
1
2
tan
−
1
(
v
)
=
tan
−
1
(
2
(
x
−
1
2
)
)
=
tan
−
1
(
2
x
−
1
)
=
tan
−
1
(
2
x
−
1
)
+
C
∫
x
cos
x
log
x
−
sin
x
x
(
log
x
)
2
d
x
=
Report Question
0%
sin
x
log
x
+
C
0%
cos
x
log
x
+
C
0%
log
x
sin
x
+
C
0%
log
x
cos
x
+
C
Explanation
∫
x
cos
(
x
)
log
(
x
)
−
sin
(
x
)
x
(
log
(
x
)
)
2
d
x
=
∫
cos
(
x
)
log
(
x
)
−
sin
(
x
)
x
(
log
(
x
)
)
2
d
x
=
∫
cos
(
x
)
log
(
x
)
d
x
−
∫
sin
(
x
)
x
(
log
(
x
)
)
2
d
x
=
1
log
(
x
)
sin
(
x
)
−
∫
1
x
(
log
(
x
)
)
2
(
−
cos
(
x
)
)
d
x
−
∫
sin
(
x
)
x
(
log
(
x
)
)
2
d
x
+
C
=
sin
(
x
)
log
(
x
)
+
∫
s
i
n
(
x
)
x
(
log
(
x
)
)
2
d
x
−
∫
sin
(
x
)
x
(
log
(
x
)
)
2
d
x
+
C
=
sin
(
x
)
log
(
x
)
+
C
If
∫
x
sin
x
d
x
=
−
x
cos
x
+
α
, then
α
is equal to
Report Question
0%
sin
x
+
C
0%
cos
x
+
C
0%
C
0%
None of these
Explanation
I
=
∫
x
sin
x
d
x
Integrating by parts,
Let
u
=
x
⇒
d
u
=
d
x
d
v
=
sin
x
d
x
⇒
v
=
−
cos
x
∫
u
.
v
d
x
=
u
∫
v
d
x
−
∫
[
∫
v
d
x
.
d
u
d
x
.
d
x
]
......by parts formula
I
=
−
x
cos
x
+
∫
cos
x
d
x
I
=
−
x
cos
x
+
sin
x
+
c
......where
c
is the constant of integration.
We have
I
=
∫
x
sin
x
d
x
=
−
x
cos
x
+
α
Comparing with
I
=
−
x
cos
x
+
sin
x
+
c
we have
α
=
sin
x
+
c
Evaluate :
∫
c
o
s
2
x
c
o
s
2
x
s
i
n
2
x
d
x
Report Question
0%
−
c
o
t
x
−
t
a
n
x
+
C
0%
−
c
o
t
x
+
t
a
n
x
+
C
0%
c
o
t
x
−
t
a
n
x
+
C
0%
c
o
t
x
+
t
a
n
x
+
C
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page