Explanation
$$ \displaystyle \int f''(x) \sin x dx$$
$$ \displaystyle = \sin x f'(x) - \int \cos x f'(x) dx$$
$$\displaystyle = \sin x f'(x) - \left[ \cos x f(x)+ \int \sin x f(x) dx \right]$$
$$ \displaystyle \Rightarrow \int \left[ f(x)+f''(x) \right] \sin x dx= \sin x f'(x)dx- \cos x f(x)$$
$$ \displaystyle \Rightarrow \int_0^\pi \left[ f(x)+f''(x) \right] \sin x dx=\left[ \sin x f'(x)dx- \cos x f(x) \right]_0^\pi$$
$$ \Rightarrow 5= f(\pi)+f(0)$$
$$ \Rightarrow f(0)=5-2=3$$
Please disable the adBlock and continue. Thank you.