Processing math: 100%

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 11 - MCQExams.com

Evaluate : cotx(cosecxcotx)dx
  • cosecxcotxx+C
  • cosecxcotxx+C
  • cosecx+cotxx+C
  • sinx+x+C
Let x1/21x3dx=23gof(x)+c then
  • f(x)=x
  • f(x)=x3/2
  • f(x)=x2/3
  • g(x)=sin1x
xex(1+x)2dx is equal to
  • exx+1+c
  • ex(x+1)+c
  • ex(x+1)+c
  • ex1+x2+c
Evaluate : (cos2xcos2α)(cosxcosα)dx
  • 2sinx+xcosα+C
  • 2sinx2xcosα+C
  • 2sinx+2xcosα+C
  • 2sinx2xcosα+C
Evaluate : (1sinx)cos2xdx
  • tanx+secx+C
  • tanxsecx+C
  • tanx+secx+C
  • tanxsecx+C
The value of e11+x2lnxx+x2lnxdx is
  • e
  • ln(1+e)
  • e+ln(1+e)
  • eln(1+e)
If 21ex2dx=a, then e4elnxdx is equal to
  • 2e42ea
  • 2e4ea
  • 2e4e2a
  • e4ea
The value of ex(2x2)(1x)1x2dx is equal to
  • ex1+x1x+c
  • ex1+x+c
  • ex1x+c
  • ex1x1+x+c
Evaluate 3xcos4xdx=
  • 3x(log3)2+16[(log3)cos4x+4sin4x]+c
  • 3x9+(log4)2[cos4x+(log3)sin4x]+c
  • 3x(log3)2+(log4)2[(log3)sin4x+(log4)cos3x]+c
  • 3x(log3)2+16[(log3)sin4x+(log4)cos3x]+c
logx2008(logx+1)2010dx=
  • 1(logx+1)2008+c
  • x(logx+1)2010+c
  • 1(logx+1)2009+c
  • x(logx+1)2009+c
Let f be a function defined for every x, such that f'' = -f ,f(0)=0, f' (0) = 1, then f(x) is equal to
  • tanx
  • ex1
  • sinx
  • 2sinx
sin1xcos1xsin1x+cos1xdx=
  • 4π[xsin1x+1x2]x+c
  • log[sin1x+cos1x]+c
  • 4π[xsin1x+1x2]+c
  • 4π[xsin1x1x2]+C
If xe5x2sin4x2dx=e5x2(Asin4x2+Bcos4x2)+C, then A+B
  • 166
  • 166
  • 966
  • 766
cosx1sinx+1exdx is equal to
  • excosx1+sinx+c
  • cexsinx1+sinx
  • cex1+sinx
  • cexcosx1+sinx
(x+2x+4)2exdx is equal to
  • ex(xx+4)+c
  • ex(x+2x+4)+c
  • ex(x2x+4)+c
  • (2xexx+4)+c
The value of (3x2tan1xxsec21x)dx is
  • x3tan1x+c
  • x2tan1x+c
  • xtan1x+c
  • tan1x+c
e2x(3cosxsinx)dx=
  • e2x5[(23+1)cosx(32)sinx]+c
  • e2x5[(23+1)sinx+(32)cosx]+c
  • e2x5[(23+1)sinx(32)cosx]+c
  • e2x5[(23+1)cosx+(32)sinx]+c
If e4x1e2xlog(e2x+1e2x1)ck=t22logtt24u22logu+u24+c then
  • t=exex,u=ex+ex
  • t=exex,u=ex+ex
  • t=ex+ex,u=exex
  • u=exex,t=ex+ex
cosxlog(tanx2)dx=
  • sinxlog|tanx|x+c
  • sinxlog|tanx2|+x+c
  • sinxlog|tanx2|x+c
  • sinxlog|tanx2|x+c
cos11x2dx=
  • π2x12xcos1x+c
  • π2x12xcos1x+121x2+c
  • π2x12xcos1x1x2+c
  • π2x+12xcos1x+c
x3ex2dx=
  • 12ex2(x21)+c
  • ex2(x21)+c
  • 12ex2(x2+1)+c
  • ex2(x2+1)+c
e(x2+4lnx)x3ex2x1dx is equal to
  • (e3lnxelnx2x)ex2+c
  • (x1)xex22+c
  • (x1)xex22x+c
  • 12(x21)ex2+c
lf f(x) is a polynomial of nth degree then exf(x)dx=
  • ex[f(x)f(x)+f(x)f(x)++(1)nfn(x)] Where fn(x) denotes nth order derivative of w.r.t. x
  • ex[f(x)+f(x)+f(x)+f(x)++(1)nJn(x)]
  • ex[f(x)+f(x)+f(x)+f(x)++(1)nf2n(x)]
  • d[f(x)+f(x)+f(x)+f(x)++{1)nf3n(x)]
π0{f(x)+f(x)}sinxdx=5,f(π)= Then f(0) equals 
  • 2
  • 3
  • 5
  • 4
cosec2x2005cos2005xdx is equal to
  • cotx(cosx)2005+c
  • tanx(cosx)2005+c
  • (tanx)(cosx)2005+c
  • none of these
Evaluate: x(lnaax/23a5x/2b3x+lnbbx2a2xb4x)
  • 16lna2b3a2xb3xlna2xb3xe+k
  • 16lna2b31a2xb3xln1ea2xb3x+k
  • 16lna2b31a2xb3xln(a2xb3x)+k
  • 16lna2b31a2xb3xln(a2xb4x)+k
If In=(lnx)ndx, then In+nIn1=
  • (lnx)nx+C
  • x(lnx)n1+C
  • x(lnx)n+C
  • none of these
What is the value of a + b ?
  • 2
  • 1
  • 32
  • 52
dxsin2xcos2x
  • tanxcotx+c
  • tanxx+1
  • tanxx
  • tanx+x
If sec2x2010sin2010xdx=P(x)(sinx)2010+c , where c is arbitrary constant then value of P(π3)
  • 0
  • 13
  • 3
  • 332
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers