Processing math: 100%

CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 14 - MCQExams.com

etan1x[1+x+x21+x2]dx=
  • x2etan1x+c
  • xetan1x+c
  • etan1xx+c
  • etan1xx2+c
x(lnaax23a5x2b3x+lnbbx22a2xb4x)dx(wherea,bR) is equal to
  • 16lna2b3a2xb3xlna2xb3xe+k
  • 16lna2b3a2xb3xln1ea2xb3x+k
  • 16lna2b31a2xb3xln(ea2xb3x)+k
  • 16lna2b31a2xb3xln(ea2xb3x)+k
etan1x[1+x+x21+x2]dx=
  • x2etan1x+c
  • xetan1x+c
  • etan1x+c
  • 12etan1x+c
The  value of the integral xy(x+y)dxdy over the area between y=x2 and y=x is
  • 356
  • 4756
  • 3356
  • 2356
I={loge(logex)+1(logex)2}dx is equal to 
  • xloge(logex)+c
  • xloge(logex)x(logex)+c
  • xlogexlogex+x(logex)+c
  • none of these
[log(1+cosx)xtanx2]dx is equal to ?
  • xtanx2
  • log(1+cosx)
  • xlog(1+cosx)
  • None of these
(1+xx1)ex+x1dx=
  • (x+1)ex+x1+c
  • (x1)ex+x1+c
  • xex+x1+c
  • xex+x1+c
Solve: sin32xcos52xdx
  • tan42x8+C
  • cos42x8+C
  • sin42x8+C
  • sec42x8+C
If f(x4x+2)=2x+1,(xϵR{1,2})m then f(x)dx is equal to
(where C is a constant of integration).
  • 12loge|1x|+3x+C
  • 12loge|1x|3x+C
  • 12loge|1x|3x+C
  • 12loge|1x|+3x+C
Evaluate : dxxcosx
  • lnx+x22+3x33+...
  • lnxx24+4x416+...
  • lnx+x24+5x496+...
  • lnxx23+x49+...
x2(xsinx+cosx)2dx would be equal to 
  • sinx+xcosxxsinx+cosx+c
  • sinxxcosxxsinx+cosx+c
  • sinxxcosxxsinxcosx+c
  • none of these
ex(1sinx1cosx)dx is equal to :
  • extanx2+c
  • excotx2+c
  • 12extanx2+c
  • 12excotx2+c
If the primitive of 1f(x) is equal to {f(x)}2+c,then f(x) is
  • x+D
  • x2+d
  • x22+d
  • x2+d
If x5x7dx=ax212x+35+log|x6+x212x+35|+C then A=
  • 1
  • 12
  • 12
  • 1
If ddx f(x)=g(x) for axb then abf(x)g(x)dx equals to:
  • f(2)f(1)
  • g(2)g(1)
  • [f(b)]2[f(a)]22
  • [g(b)]2[g(a)]22
The value of (3x2tan1xxsec21x)dx  is
  • x3tan1x+c
  • x2tan1x+c
  • xtan1x+c
  • tan1x+c
If g(x) is a differentiable function satisfying ddxg(x)=g(x) and g(0)=1, then g(x)(2sin2x1cos2x)dx is equal to 
  • g(x)cot x+C
  • g(x)cot x+C
  • g(x)1cos2x+C
  • None of these
Let f:RR,g:RR be continuous functions. then the value of integeral. 
n/λnλf(x24)[f(x)f(x)]g(x24)[g(x)+g(x)]dx is:
  • depend on λ
  • a non-zero constant
  • zero
  • 1
If I=1x4a2+x2dx, then I equals 
  • 1a4={1xa2+x213x3a2+x2}+C
  • 1a4={1xa2+x213x3(a2x2)3/2}+C
  • 1a4={1xa2+x212x(a2x2)3/2}+C
  • None of these
Evaluate: 1x2(x4+1)34dx;x=0
  • (x41)14x+c
  • (x4+1)14x+c
  • x4+1x+c
  • None of these
If x36x2+11x6x2+4x+3dx=(Ax2+bx+c)x2+4x+3+λdxx2+4x+3 , then value of 'A' is
  • 13
  • 1
  • 3
  • 1/3
If x(0,π2) then ex21sinx1+cosxdx=
  • eπ/2secx2+c
  • ex2secx2+c
  • ex2secx2+c
  • ex2secx2+c
π/40tan2xdx equals -
  • π/4
  • 1+(π/4)
  • 1(π/4)
  • 1(π/2)
Evaluate
dx1x
  • sin1x
  • sin1x+c
  • 21x+c
  • 21x+c
Let [] denote the greatest integer function then the value of 1.50x[x2]dx is?
  • 0
  • 32
  • 74
  • 54
The integral   sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx   is equal to :
  • 11+cot3x+C
  • 13(1+tan3x)+C
  • 13(1+tan3x)+C
  • 11+cot3x+C
The integral 3x13+2x11(2x4+3x2+1)4dx is equal to: (where C is a constant of integration)
  • x4(2x4+3x2+1)3+C
  • x126(2x4+3x2+1)3+C
  • x46(2x4+3x2+1)3+C
  • x12(2x4+3x2+1)3+C
The value of π/4π/4dxsec2x(1sinx) is
  • π/4
  • π
  • π/2
  • 2π
Evaluate: x4x3dx
  • 23sin1(x322)+c
  • 23sin1(x32)+c
  • 2sin1(x322)+c
  • 13sin1(x322)+c
If cosxdxsin3x(1+sin6x)2/3=f(x)(1+sin6x)1/α+c
Where c is a constant of integration, then λf(π3) is equal to:
  • 98
  • 2
  • 2
  • 98
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers