CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 14 - MCQExams.com

$$\displaystyle \int { { e }^{ \tan ^{ -1 }{ x }  } } \left[ \frac { 1+x+x^{ 2 } }{ 1+x^{ 2 } }  \right] dx=$$
  • $$\displaystyle x^{ 2 }{ e }^{ \tan ^{ -1 }{ x } }+c$$
  • $$\displaystyle x{ e }^{ \tan ^{ -1 }{ x } }+c$$
  • $$\displaystyle \dfrac{{ e }^{ \tan ^{ -1 }{ x } }}{x}+c$$
  • $$\displaystyle \dfrac{{ e }^{ \tan ^{ -1 }{ x } }}{x^2}+c$$
$$\int {x\left( {\frac{{\ln {a^{{a^{\frac{x}{2}}}}}}}{{3{a^{\frac{{5x}}{2}}}{b^{3x}}}} + \frac{{\ln {b^{{b^{\frac{x}{2}}}}}}}{{2{a^{2x}}{b^{4x}}}}} \right)} dx\left( {where\,a,b \in R} \right)$$ is equal to
  • $$\frac{1}{{6\ln {a^2}{b^3}}}{a^{2x}}{b^{3x}}\ln \frac{{{a^{2x}}{b^{3x}}}}{e} + k$$
  • $$\frac{1}{{6\ln {a^2}{b^3}}}{a^{2x}}{b^{3x}}\ln \frac{1}{{e{a^{2x}}{b^{3x}}}} + k$$
  • $$\frac{1}{{6\ln {a^2}{b^3}}}\frac{1}{{{a^{2x}}{b^{3x}}}}\ln \left( {e{a^{2x}}{b^{3x}}} \right) + k$$
  • $$ - \frac{1}{{6\ln {a^2}{b^3}}}\frac{1}{{{a^{2x}}{b^{3x}}}}\ln \left( {e{a^{2x}}{b^{3x}}} \right) + k$$
$$\displaystyle \int { { e }^{ \tan ^{ -1 }{ x }  } } \left[ \dfrac { 1+x+x^{ 2 } }{ 1+x^{ 2 } }  \right] dx=$$
  • $$x^{ 2 }{ e }^{ \tan ^{ -1 }{ x } }+c$$
  • $$x{ e }^{ \tan ^{ -1 }{ x } }+c$$
  • $${ e }^{ \tan ^{ -1 }{ x } }+c$$
  • $$\frac { 1 }{ 2 } { e }^{ \tan ^{ -1 }{ x } }+c$$
The  value of the integral $$\int\int xy(x+y)dx {\,}dy$$ over the area between $$y=x^2$$ and $$y=x$$ is
  • $$\dfrac{3}{56}$$
  • $$\dfrac{47}{56}$$
  • $$\dfrac{33}{56}$$
  • $$\dfrac{23}{56}$$
$$I=\int { \left\{ \log _{ e }( \log _{ e }{ x }) +\cfrac { 1 }{ { \left( \log _{ e }{ x }  \right)  }^{ 2 } }  \right\}  } dx$$ is equal to 
  • $$x\log _{ e }( \log _{ e }{ x } )+c$$
  • $$x\log _{ e }( \log _{ e }{ x })-\cfrac { x }{ { \left( \log _{ e }{ x } \right) }^{ } } +c$$
  • $$x\log _{ e }{ x } \log _{ e }{ x } +\cfrac { x }{ { \left( \log _{ e }{ x } \right) }^{ } } +c$$
  • none of these
$$\left[ \int \log ( 1 + \cos x ) - x \tan \frac { x } { 2 } \right] d x$$ is equal to ?
  • $$x \tan \frac { x } { 2 }$$
  • $$\log ( 1 + \cos x )$$
  • $$x \log ( 1 + \cos x )$$
  • None of these
$$\int (1+x-x^{-1})e^{x+x^{1}}dx=$$
  • $$(x+1)e^{x+x^{-1}}+c$$
  • $$(x-1)e^{x+x^{-1}}+c$$
  • $$-xe^{x+x^{-1}}+c$$
  • $$xe^{x+x^{-1}}+c$$
Solve: $$\int\dfrac{sin^32x}{cos^52x}dx$$
  • $$\dfrac{{{{\tan }^4}2x}}{8} + C$$
  • $$\dfrac{{{{\cos}^4}2x}}{8} + C$$
  • $$\dfrac{{{{\sin}^4}2x}}{8} + C$$
  • $$\dfrac{{{{\sec}^4}2x}}{8} + C$$
If $$f\left (\dfrac {x - 4}{x + 2}\right ) = 2x + 1, (x\epsilon R - \left \{1, -2\right \})$$m then $$\int f(x) dx$$ is equal to
(where $$C$$ is a constant of integration).
  • $$12\log_{e}|1 - x| + 3x + C$$
  • $$-12\log_{e}|1 - x| - 3x + C$$
  • $$12\log_{e}|1 - x| - 3x + C$$
  • $$-12\log_{e}|1 - x| + 3x + C$$
Evaluate : $$\int { \cfrac { dx }{ x\cos { x }  }  } $$
  • $$\ln { x } +\cfrac { { x }^{ 2 } }{ 2 } +\cfrac { { 3x }^{ 3 } }{ 3 } +...$$
  • $$\ln { x } -\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { 4x }^{ 4 } }{ 16 } +...$$
  • $$\ln { x } +\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { 5x }^{ 4 } }{ 96 } +...$$
  • $$\ln { x } -\cfrac { { x }^{ 2 } }{ 3 } +\cfrac { { x }^{ 4 } }{ 9 } +...$$
$$\int_{}^{} {\frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}dx} $$ would be equal to 
  • $$\frac{{\sin x + x\cos x}}{{x\sin x + \cos x}} + c$$
  • $$\frac{{\sin x - x\cos x}}{{x\sin x + \cos x}} + c$$
  • $$\frac{{\sin x - x\cos x}}{{x\sin x - \cos x}} + c$$
  • none of these
$$\displaystyle \int_{}^{} {{e^x}\left( {\frac{{1 - \sin x}}{{1 - \cos x}}} \right)dx} $$ is equal to :
  • $$ - {e^x}\tan \frac{x}{2} + c$$
  • $$ - {e^x}\cot \frac{x}{2} + c$$
  • $$ - \frac{1}{2}{e^x}\tan \frac{x}{2} + c$$
  • $$ - \frac{1}{2}{e^x}\cot \frac{x}{2} + c$$
If the primitive of $$\frac{1}{{f\left( x \right)}}\,$$ is equal to $$\,{\left\{ {f\left( x \right)} \right\}^2} + c$$,then f(x) is
  • $$x + D$$
  • $$\frac{x}{2} + d$$
  • $$\frac{{{x^2}}}{2} + d$$
  • $${x^2} + d$$
If $$\int \sqrt{\dfrac{x-5}{x-7}}dx=a\sqrt{x^{2}-12x+35+log}|x-6+\sqrt{x^{2}-12x+35}|+C$$ then $$A$$=
  • $$-1$$
  • $$\dfrac{1}{2}$$
  • $$-\dfrac{1}{2}$$
  • $$1$$
If $$\dfrac{d}{dx}\ f(x)=g(x)$$ for $$a\leq x\leq b$$ then $$\int_{b}^{a}f(x)g(x)dx$$ equals to:
  • $$f(2)-f(1)$$
  • $$g(2)-g(1)$$
  • $$\dfrac{[f(b)]^{2}-[f(a)]^{2}}{2}$$
  • $$\dfrac{[g(b)]^{2}-[g(a)]^{2}}{2}$$
The value of $$\displaystyle \int \left ( 3x^{2}\tan \dfrac{1}{x}-x\sec^{2}\dfrac{1}{x}  \right )dx$$  is
  • $$x^{3}\tan \dfrac{1}{x}+c$$
  • $$x^{2}\tan \dfrac{1}{x}+c$$
  • $$x\tan \dfrac{1}{x}+c$$
  • $$\tan \dfrac{1}{x}+c$$
If $$g(x)$$ is a differentiable function satisfying $$\dfrac{d}{dx}{g(x)}=g(x)$$ and $$g(0)=1,$$ then $$\int { g\left( x \right)  } \left( \dfrac { 2-sin2x }{ 1-cos2x }  \right) dx$$ is equal to 
  • $$g(x)cot$$ $$x+C$$
  • $$-g(x)cot$$ $$x+C$$
  • $$\dfrac{g(x)}{1-cos2x}+C$$
  • $$None$$ $$of$$ $$these$$
Let $$f:R\longrightarrow R,g : R\longrightarrow R$$ be continuous functions. then the value of integeral. 
$$\int _{ \ell n\lambda  }^{ \ell n/\lambda  }{ \frac { f\left( \dfrac { { x }^{ 2 } }{ 4 }  \right) \left[ f\left( x \right) -f\left( -x \right)  \right]  }{ g\left( \dfrac { { x }^{ 2 } }{ 4 }  \right) \left[ g\left( x \right) +g\left( -x \right)  \right]  }  } dx$$ is:
  • depend on $$\lambda$$
  • a non-zero constant
  • zero
  • 1
If $$I=\int { \dfrac { 1 }{ { x }^{ 4 }\sqrt { { a }^{ 2 }+{ x }^{ 2 } }  } dx, } $$ then $$I$$ equals 
  • $$\dfrac { 1 }{ { a }^{ 4 } } =\left\{ \dfrac { 1 }{ x } \sqrt { { a }^{ 2 }+{ x }^{ 2 } } -\dfrac { 1 }{ { 3x }^{ 3 } } \sqrt { { a }^{ 2 }{ +x }^{ 2 } } \right\} +C$$
  • $$\dfrac { 1 }{ { a }^{ 4 } } =\left\{ \dfrac { 1 }{ x } \sqrt { { a }^{ 2 }+{ x }^{ 2 } } -\dfrac { 1 }{ { 3x }^{ 3 } } ({ a }^{ 2 }{ x }^{ 2 })^{3/2} \right\} +C$$
  • $$\dfrac { 1 }{ { a }^{ 4 } } =\left\{ \dfrac { 1 }{ x } \sqrt { { a }^{ 2 }+{ x }^{ 2 } } -\dfrac { 1 }{ { 2 }\sqrt { x } } ({ a }^{ 2 }{ x }^{ 2 })^{3/2} \right\} +C$$
  • None of these
Evaluate: $$\displaystyle \int \dfrac { 1 } { x ^ { 2 } \left( x ^ { 4 } + 1 \right) ^ { \frac { 3 } { 4 } } } d x ; x = 0$$
  • $$\dfrac { \left( x ^ { 4 } - 1 \right) ^ { \frac { 1 } { 4 } } } { x } + c$$
  • $$-\dfrac { \left( x ^ { 4 } + 1 \right) ^ { \frac { 1 } { 4 } } } { x } + c$$
  • $$\dfrac { \sqrt { x ^ { 4 } + 1 } } { x } + c$$
  • None of these
If $$ \int\dfrac{x^3-6x^2+11x-6}{\sqrt{x^2+4x+3}}dx=(Ax^2+bx+c)\sqrt{x^2+4x+3}+\lambda \int\dfrac{dx}{\sqrt{x^2+4x+3}}$$ , then value of 'A' is
  • $$\dfrac{1}{3}$$
  • $$1$$
  • $$3$$
  • $$-1/3$$
If $$x\in \left(0, \dfrac{\pi}{2}\right)$$ then $$\displaystyle \int{e^{\dfrac{-x}{2}}\dfrac{\sqrt{1-\sin x}}{1+cos x}dx}$$=
  • $$e^{-\pi/2}\sec\dfrac{x}{2}+c$$
  • $$-e^{\dfrac{-x}{2}}\sec\dfrac{x}{2}+c$$
  • $$e^{\dfrac{x}{2}}\sec\dfrac{x}{2}+c$$
  • $$-e^{\dfrac{x}{2}}\sec\dfrac{x}{2}+c$$
$$\int _ { 0 } ^ { \pi / 4 } \tan ^ { 2 } x d x$$ equals -
  • $$\pi / 4$$
  • $$1 + ( \pi / 4 )$$
  • $$1 - ( \pi / 4 )$$
  • $$1 - ( \pi / 2 )$$
Evaluate
$$\int \dfrac{dx}{\sqrt{1-x}}$$
  • $$\sin^{-1} \sqrt{x}$$
  • $$-\sin^{-1} \sqrt{x}+c$$
  • $$2\sqrt{1-x}+c$$
  • $$-2\sqrt{1-x}+c$$
Let $$[\cdot]$$ denote the greatest integer function then the value of $$\displaystyle\int^{1.5}_0x[x^2]dx$$ is?
  • $$0$$
  • $$\dfrac{3}{2}$$
  • $$\dfrac{7}{4}$$
  • $$\dfrac{5}{4}$$
The integral   $$\int  \dfrac { \sin ^{ { 2 } } x\cos ^{ { 2 } } x }{ \left( \sin ^{ { 5 } } x+\cos ^{ { 3 } } x\sin ^{ { 2 } } x+\sin ^{ { 3 } } x\cos ^{ { 2 } } x+\cos ^{ { 5 } } x \right) ^{ { 2 } } } dx$$   is equal to :
  • $$\dfrac { - 1 } { 1 + \cot ^ { 3 } x } + C$$
  • $$\dfrac { 1 } { 3 \left( 1 + \tan ^ { 3 } x \right) } + C$$
  • $$\dfrac { - 1 } { 3 \left( 1 + \tan ^ { 3 } x \right) } + C$$
  • $$\dfrac { 1 } { 1 + \cot ^ { 3 } x } + C$$
The integral $$\int \dfrac{3x^{13} + 2x^{11}}{(2x^4 + 3x^2 + 1)^4}dx$$ is equal to: (where C is a constant of integration)
  • $$\dfrac{x^4}{(2x^4 + 3x^2 + 1)^3} + C$$
  • $$\dfrac{x^{12}}{6(2x^4 + 3x^2 + 1)^3} + C$$
  • $$\dfrac{x^4}{6(2x^4 + 3x^2 + 1)^3} + C$$
  • $$\dfrac{x^{12}}{(2x^4 + 3x^2 + 1)^3} + C$$
The value of $$\displaystyle \int^{\pi/4}_{-\pi /4} \dfrac{dx}{sec^2x(1-sinx)}$$ is
  • $$\pi / 4$$
  • $$\pi$$
  • $$\pi / 2$$
  • $$2 \pi$$
Evaluate: $$\int { \sqrt { \dfrac { x }{ 4-{ x }^{ 3 } }  }  } dx$$
  • $$\dfrac { 2 }{ 3 } \sin ^{ -1 }{ \left( \dfrac { { x }^{ \dfrac { 3 }{ 2 } } }{ 2 } \right) +c } $$
  • $$\dfrac { 2 }{ 3 } \sin ^{ -1 }{ \left( { x }^{ \dfrac { 3 }{ 2 } } \right) +c } $$
  • $$2\sin ^{ -1 }{ \left( \dfrac { { x }^{ \dfrac { 3 }{ 2 } } }{ 2 } \right) +c } $$
  • $$\dfrac { 1 }{ 3 } \sin ^{ -1 }{ \left( \dfrac { { x }^{ \dfrac { 3 }{ 2 } } }{ 2 } \right) +c } $$
If $$\displaystyle\int \dfrac{\cos x \, dx}{\sin^3x(1+\sin^6x)^{2/3}} = f(x)(1 + \sin^6x)^{1/\alpha} + c$$
Where $$c$$ is a constant of integration, then $$\lambda f\left(\dfrac{\pi}{3}\right)$$ is equal to:
  • $$\dfrac{9}{8}$$
  • $$-2$$
  • $$2$$
  • $$-\dfrac{9}{8}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers