Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Applied Mathematics Indefinite Integrals Quiz 14 - MCQExams.com
CBSE
Class 12 Commerce Applied Mathematics
Indefinite Integrals
Quiz 14
∫
e
tan
−
1
x
[
1
+
x
+
x
2
1
+
x
2
]
d
x
=
Report Question
0%
x
2
e
tan
−
1
x
+
c
0%
x
e
tan
−
1
x
+
c
0%
e
tan
−
1
x
x
+
c
0%
e
tan
−
1
x
x
2
+
c
∫
x
(
ln
a
a
x
2
3
a
5
x
2
b
3
x
+
ln
b
b
x
2
2
a
2
x
b
4
x
)
d
x
(
w
h
e
r
e
a
,
b
∈
R
)
is equal to
Report Question
0%
1
6
ln
a
2
b
3
a
2
x
b
3
x
ln
a
2
x
b
3
x
e
+
k
0%
1
6
ln
a
2
b
3
a
2
x
b
3
x
ln
1
e
a
2
x
b
3
x
+
k
0%
1
6
ln
a
2
b
3
1
a
2
x
b
3
x
ln
(
e
a
2
x
b
3
x
)
+
k
0%
−
1
6
ln
a
2
b
3
1
a
2
x
b
3
x
ln
(
e
a
2
x
b
3
x
)
+
k
∫
e
tan
−
1
x
[
1
+
x
+
x
2
1
+
x
2
]
d
x
=
Report Question
0%
x
2
e
tan
−
1
x
+
c
0%
x
e
tan
−
1
x
+
c
0%
e
tan
−
1
x
+
c
0%
1
2
e
tan
−
1
x
+
c
The value of the integral
∫
∫
x
y
(
x
+
y
)
d
x
d
y
over the area between
y
=
x
2
and
y
=
x
is
Report Question
0%
3
56
0%
47
56
0%
33
56
0%
23
56
I
=
∫
{
log
e
(
log
e
x
)
+
1
(
log
e
x
)
2
}
d
x
is equal to
Report Question
0%
x
log
e
(
log
e
x
)
+
c
0%
x
log
e
(
log
e
x
)
−
x
(
log
e
x
)
+
c
0%
x
log
e
x
log
e
x
+
x
(
log
e
x
)
+
c
0%
none of these
[
∫
log
(
1
+
cos
x
)
−
x
tan
x
2
]
d
x
is equal to ?
Report Question
0%
x
tan
x
2
0%
log
(
1
+
cos
x
)
0%
x
log
(
1
+
cos
x
)
0%
None of these
∫
(
1
+
x
−
x
−
1
)
e
x
+
x
1
d
x
=
Report Question
0%
(
x
+
1
)
e
x
+
x
−
1
+
c
0%
(
x
−
1
)
e
x
+
x
−
1
+
c
0%
−
x
e
x
+
x
−
1
+
c
0%
x
e
x
+
x
−
1
+
c
Solve:
∫
s
i
n
3
2
x
c
o
s
5
2
x
d
x
Report Question
0%
tan
4
2
x
8
+
C
0%
cos
4
2
x
8
+
C
0%
sin
4
2
x
8
+
C
0%
sec
4
2
x
8
+
C
If
f
(
x
−
4
x
+
2
)
=
2
x
+
1
,
(
x
ϵ
R
−
{
1
,
−
2
}
)
m then
∫
f
(
x
)
d
x
is equal to
(where
C
is a constant of integration).
Report Question
0%
12
log
e
|
1
−
x
|
+
3
x
+
C
0%
−
12
log
e
|
1
−
x
|
−
3
x
+
C
0%
12
log
e
|
1
−
x
|
−
3
x
+
C
0%
−
12
log
e
|
1
−
x
|
+
3
x
+
C
Evaluate :
∫
d
x
x
cos
x
Report Question
0%
ln
x
+
x
2
2
+
3
x
3
3
+
.
.
.
0%
ln
x
−
x
2
4
+
4
x
4
16
+
.
.
.
0%
ln
x
+
x
2
4
+
5
x
4
96
+
.
.
.
0%
ln
x
−
x
2
3
+
x
4
9
+
.
.
.
∫
x
2
(
x
sin
x
+
cos
x
)
2
d
x
would be equal to
Report Question
0%
sin
x
+
x
cos
x
x
sin
x
+
cos
x
+
c
0%
sin
x
−
x
cos
x
x
sin
x
+
cos
x
+
c
0%
sin
x
−
x
cos
x
x
sin
x
−
cos
x
+
c
0%
none of these
∫
e
x
(
1
−
sin
x
1
−
cos
x
)
d
x
is equal to :
Report Question
0%
−
e
x
tan
x
2
+
c
0%
−
e
x
cot
x
2
+
c
0%
−
1
2
e
x
tan
x
2
+
c
0%
−
1
2
e
x
cot
x
2
+
c
Explanation
Let
I
=
∫
e
x
1
−
sin
x
1
−
cos
x
d
x
=
∫
e
x
1
−
2
sin
x
2
cos
x
2
1
−
1
+
2
sin
2
x
2
d
x
=
∫
e
x
1
−
2
sin
x
2
cos
x
2
2
sin
2
x
2
d
x
=
∫
e
x
(
csc
2
x
2
2
−
cot
x
2
)
d
x
Let
f
(
x
)
=
−
cot
x
2
⇒
f
′
(
x
)
=
1
2
csc
2
x
2
⇒
I
=
∫
e
x
(
csc
2
x
2
2
−
cot
x
2
)
d
x
Using
∫
e
x
(
f
(
x
)
+
f
′
(
x
)
)
d
x
=
e
x
f
(
x
)
+
C
⇒
I
=
−
e
x
cot
x
2
+
c
If the primitive of
1
f
(
x
)
is equal to
{
f
(
x
)
}
2
+
c
,then f(x) is
Report Question
0%
x
+
D
0%
x
2
+
d
0%
x
2
2
+
d
0%
x
2
+
d
If
∫
√
x
−
5
x
−
7
d
x
=
a
√
x
2
−
12
x
+
35
+
l
o
g
|
x
−
6
+
√
x
2
−
12
x
+
35
|
+
C
then
A
=
Report Question
0%
−
1
0%
1
2
0%
−
1
2
0%
1
If
d
d
x
f
(
x
)
=
g
(
x
)
for
a
≤
x
≤
b
then
∫
a
b
f
(
x
)
g
(
x
)
d
x
equals to:
Report Question
0%
f
(
2
)
−
f
(
1
)
0%
g
(
2
)
−
g
(
1
)
0%
[
f
(
b
)
]
2
−
[
f
(
a
)
]
2
2
0%
[
g
(
b
)
]
2
−
[
g
(
a
)
]
2
2
The value of
∫
(
3
x
2
tan
1
x
−
x
sec
2
1
x
)
d
x
is
Report Question
0%
x
3
tan
1
x
+
c
0%
x
2
tan
1
x
+
c
0%
x
tan
1
x
+
c
0%
tan
1
x
+
c
Explanation
I
=
∫
(
3
x
2
tan
1
x
−
x
sec
2
1
x
)
d
x
I
=
∫
3
x
2
tan
1
x
d
x
−
∫
sec
2
1
x
.
x
d
x
I
=
I
1
−
I
2
I
1
=
∫
3
x
2
tan
1
x
d
x
=
tan
1
x
.
∫
3
x
2
d
x
−
∫
(
d
d
x
tan
1
x
.
∫
3
x
2
d
x
)
d
x
+
c
=
tan
1
x
.
x
3
−
∫
sec
2
1
x
.
(
−
1
x
2
)
.
x
3
d
x
+
c
=
tan
1
x
.
x
3
+
∫
x
sec
2
1
x
d
x
+
c
Now
I
=
I
1
−
I
2
=
tan
1
x
.
x
3
+
∫
x
.
sec
2
1
x
d
x
−
∫
x
sec
2
1
x
d
x
+
c
=
x
2
tan
1
x
+
c
.
If
g
(
x
)
is a differentiable function satisfying
d
d
x
g
(
x
)
=
g
(
x
)
and
g
(
0
)
=
1
,
then
∫
g
(
x
)
(
2
−
s
i
n
2
x
1
−
c
o
s
2
x
)
d
x
is equal to
Report Question
0%
g
(
x
)
c
o
t
x
+
C
0%
−
g
(
x
)
c
o
t
x
+
C
0%
g
(
x
)
1
−
c
o
s
2
x
+
C
0%
N
o
n
e
o
f
t
h
e
s
e
Let
f
:
R
⟶
R
,
g
:
R
⟶
R
be continuous functions. then the value of integeral.
∫
ℓ
n
/
λ
ℓ
n
λ
f
(
x
2
4
)
[
f
(
x
)
−
f
(
−
x
)
]
g
(
x
2
4
)
[
g
(
x
)
+
g
(
−
x
)
]
d
x
is:
Report Question
0%
depend on
λ
0%
a non-zero constant
0%
zero
0%
1
If
I
=
∫
1
x
4
√
a
2
+
x
2
d
x
,
then
I
equals
Report Question
0%
1
a
4
=
{
1
x
√
a
2
+
x
2
−
1
3
x
3
√
a
2
+
x
2
}
+
C
0%
1
a
4
=
{
1
x
√
a
2
+
x
2
−
1
3
x
3
(
a
2
x
2
)
3
/
2
}
+
C
0%
1
a
4
=
{
1
x
√
a
2
+
x
2
−
1
2
√
x
(
a
2
x
2
)
3
/
2
}
+
C
0%
None of these
Evaluate:
∫
1
x
2
(
x
4
+
1
)
3
4
d
x
;
x
=
0
Report Question
0%
(
x
4
−
1
)
1
4
x
+
c
0%
−
(
x
4
+
1
)
1
4
x
+
c
0%
√
x
4
+
1
x
+
c
0%
None of these
Explanation
I
=
∫
d
x
x
2
(
1
+
x
4
)
3
/
4
=
∫
d
x
x
2
(
1
+
x
4
)
3
/
4
.
x
3
x
3
I
=
∫
d
x
x
5
(
(
1
+
x
4
)
1
/
4
x
)
3
u
=
(
1
+
x
4
)
1
/
4
x
(
u
x
)
4
=
x
4
+
1
u
4
=
1
+
1
x
4
4
u
3
d
u
=
−
4
d
x
x
5
u
3
d
u
=
−
d
x
x
5
I
=
∫
−
u
3
d
u
u
3
=
−
∫
d
u
=
−
u
+
c
=
−
(
1
+
x
4
)
1
/
4
x
+
c
If
∫
x
3
−
6
x
2
+
11
x
−
6
√
x
2
+
4
x
+
3
d
x
=
(
A
x
2
+
b
x
+
c
)
√
x
2
+
4
x
+
3
+
λ
∫
d
x
√
x
2
+
4
x
+
3
, then value of 'A' is
Report Question
0%
1
3
0%
1
0%
3
0%
−
1
/
3
If
x
∈
(
0
,
π
2
)
then
∫
e
−
x
2
√
1
−
sin
x
1
+
c
o
s
x
d
x
=
Report Question
0%
e
−
π
/
2
sec
x
2
+
c
0%
−
e
−
x
2
sec
x
2
+
c
0%
e
x
2
sec
x
2
+
c
0%
−
e
x
2
sec
x
2
+
c
∫
π
/
4
0
tan
2
x
d
x
equals -
Report Question
0%
π
/
4
0%
1
+
(
π
/
4
)
0%
1
−
(
π
/
4
)
0%
1
−
(
π
/
2
)
Evaluate
∫
d
x
√
1
−
x
Report Question
0%
sin
−
1
√
x
0%
−
sin
−
1
√
x
+
c
0%
2
√
1
−
x
+
c
0%
−
2
√
1
−
x
+
c
Let
[
⋅
]
denote the greatest integer function then the value of
∫
1.5
0
x
[
x
2
]
d
x
is?
Report Question
0%
0
0%
3
2
0%
7
4
0%
5
4
The integral
∫
sin
2
x
cos
2
x
(
sin
5
x
+
cos
3
x
sin
2
x
+
sin
3
x
cos
2
x
+
cos
5
x
)
2
d
x
is equal to :
Report Question
0%
−
1
1
+
cot
3
x
+
C
0%
1
3
(
1
+
tan
3
x
)
+
C
0%
−
1
3
(
1
+
tan
3
x
)
+
C
0%
1
1
+
cot
3
x
+
C
The integral
∫
3
x
13
+
2
x
11
(
2
x
4
+
3
x
2
+
1
)
4
d
x
is equal to: (where C is a constant of integration)
Report Question
0%
x
4
(
2
x
4
+
3
x
2
+
1
)
3
+
C
0%
x
12
6
(
2
x
4
+
3
x
2
+
1
)
3
+
C
0%
x
4
6
(
2
x
4
+
3
x
2
+
1
)
3
+
C
0%
x
12
(
2
x
4
+
3
x
2
+
1
)
3
+
C
Explanation
∫
3
x
13
+
2
x
11
(
2
x
4
+
3
x
2
+
1
)
4
d
x
∫
⟮
3
x
3
+
2
x
5
⟯
d
x
⟮
2
+
3
x
2
+
1
x
4
⟯
4
Let
⟮
2
+
3
x
2
+
1
x
4
⟯
=
t
−
1
2
∫
d
t
t
4
=
1
6
t
3
+
C
⇒
x
12
6
(
2
x
4
+
3
x
2
+
1
)
4
+
C
The value of
∫
π
/
4
−
π
/
4
d
x
s
e
c
2
x
(
1
−
s
i
n
x
)
is
Report Question
0%
π
/
4
0%
π
0%
π
/
2
0%
2
π
Evaluate:
∫
√
x
4
−
x
3
d
x
Report Question
0%
2
3
sin
−
1
(
x
3
2
2
)
+
c
0%
2
3
sin
−
1
(
x
3
2
)
+
c
0%
2
sin
−
1
(
x
3
2
2
)
+
c
0%
1
3
sin
−
1
(
x
3
2
2
)
+
c
If
∫
cos
x
d
x
sin
3
x
(
1
+
sin
6
x
)
2
/
3
=
f
(
x
)
(
1
+
sin
6
x
)
1
/
α
+
c
Where
c
is a constant of integration, then
λ
f
(
π
3
)
is equal to:
Report Question
0%
9
8
0%
−
2
0%
2
0%
−
9
8
Explanation
∫
cos
x
d
x
sin
3
x
(
1
+
sin
6
x
)
2
/
3
=
f
(
x
)
(
1
+
sin
6
x
)
1
/
α
+
c
.
.
.
.
.
g
i
v
e
n
Let
sin
x
=
t
cot
x
d
x
=
d
t
I
=
∫
d
t
t
3
(
1
+
t
6
)
2
/
3
I
=
∫
d
t
t
3
.
t
4
(
1
+
1
t
6
)
2
/
3
I
=
∫
d
t
t
7
(
1
+
1
t
6
)
2
/
3
Put
1
+
1
t
6
=
r
3
⇒
d
t
t
7
=
−
1
2
r
2
d
r
=
−
1
2
∫
r
2
d
r
r
2
=
−
1
2
r
+
c
=
−
1
2
(
sin
6
x
+
1
sin
6
x
)
1
/
3
+
c
.
.
.
.
.
.
.
As
r
=
(
1
+
1
t
6
)
1
/
3
and
t
=
sin
x
=
−
1
2
sin
2
x
(
1
+
sin
6
x
)
1
/
3
+
c
f
(
x
)
=
−
1
2
c
o
s
e
c
2
x
and
λ
=
3
Now for
x
=
π
3
c
o
s
e
c
π
3
=
2
√
3
λ
f
(
π
3
)
=
−
1
2
×
(
2
√
3
)
2
×
3
λ
f
(
π
3
)
=
−
2
.
.
.
.
.
A
n
s
w
e
r
Hence option
′
B
′
is the answer.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page